In this Erratum, we present a correction to our proof of Theorem D.4 in Ref. 1. In the proof of Theorem D.4 on p. 2298 in Ref. 1, Eq. (D26) does not hold on the specified domain \( R^N \setminus \bigcup_{i=1}^m \{x_i\} \cup \bigcup_{j=1}^M \{x_j\} \). The proof after Eq. (D25) can be refined as follows. Let

\[
\bar{W}(x) = \sum_{i=1}^m \lambda_i \left( \int_{r_0}^{r_1} \omega \rho^{N-1} \varphi_1(r) \, dr \right) F_1(x, x_i) - \sum_{j=1}^M \Lambda_j \left( \int_{r_0}^{r_1} \omega \rho^{N-1} \varphi_1(r) \, dr \right) F_1(x, X_j),
\]

for \( x \in R^N \setminus \bigcup_{i=1}^m \{x_i\} \cup \bigcup_{j=1}^M \{x_j\} \). It follows from Eq. (D25) that

\[
\bar{W}(x) = 0, \quad \text{for} \ x \in R^N \setminus \tilde{\Omega}_1,
\]

and

\[-D_1 \Delta \bar{W} + \mu_1 \bar{W} = 0, \quad \text{on} \ R^N \setminus \bigcup_{i=1}^m \{x_i\} \cup \bigcup_{j=1}^M \{x_j\}.\]

Then, the unique continuation theory (cf. Ref. 27 in Ref. 1) implies that

\[
\bar{W}(x) = 0, \quad \text{on} \ R^N \setminus \bigcup_{i=1}^m \{x_i\} \cup \bigcup_{j=1}^M \{x_j\},
\]

which immediately leads to Theorem D.4.

\[a\) Electronic mail: ge-wang@ieee.org
\[b\) Electronic mail: yi-li@uiowa.edu
\[c\) Electronic mail: jiangm@math.pku.edu.cn