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Abstract. Since Katsevich’s work on cone-beam CT in 2002, a series of new reconstruction formulae for cone-beam and
fan-beam reconstruction have been published. To understand these new results in a unified way, two schemes were proposed
in the literature: one is based on the Radon formula, while the other on the Tuy formula. In the paper, we present a general
two-step scheme for parallel-, fan- and cone-beam CT based on the inverse Fourier transform. We first derive parallel-beam
formulae and then translate them to the divergent-beam case via a standardized method. This complete framework not only
provides a single mechanism for the deduction of most existing CT formulae but also generates new algorithms. Meanwhile,
along the development of this new framework some minor flaws are identified and fixed in publications. Additionally, the
traditional assumption that an object be compactly supported inside a scanning trajectory is no longer needed.

Keywords: Computed Tomography (CT), Fourier analysis, convolution theorem, Dirac function, two-step scheme, instantaneous
cylindrical system, three-step method, weighted back-projection (WBP), weighted Hilbert transform (WHT), frequency plane,
dartboard function, Outward-homeward function, J function, odd/even extension, cone-beam, complete region, trajectory
projection

1. Introduction

The British engineer Hounsfield reported the first x-ray computed tomography (CT) scanner in 1973,
with which the internal structure of an object can be recovered from projections [1]. The invention of
CT started a new era of medical imaging and nondestructive testing [2—4]. During the CT development,
the imaging system has been changed from parallel-beam to fan-beam, and eventually to cone-beam
geometry (see Fig. 1). The essence of the CT theory is to find formulae for image reconstruction of an
object from projections collected in a beam geometry along a scanning trajectory. The Radon formula [5]
is traditionally considered as the foundation of CT over several decades. The filtered backprojection
(FBP) formula in the parallel-beam case, which was developed from the Fourier slice theorem [6], is
equivalent to the Radon formula in the 2D case. The FBP formula in the fan-beam case was deducted
from the Radon formula [7]. Some cone-beam CT formulae [8,9] were also developed from the Radon
formula. Before 2002, all the exact reconstruction formulae require that the object be entirely covered by
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Fig. 1. Shapes of the x-ray beams and their projections on the detection plane (array). (a) A 2D parallel-beam, (b) a fan-beam,
(c) a 3D parallel-beam, and (d) a cone-beam.

the x-ray beam(s). In 2002, Katsevich reported the first cone-beam formula that can exactly reconstruct
an object from longitudinally truncated cone-beam projections [10,11]. Since then, a series of cone-beam
formulae [12] were developed, including FBP [13—17] and backprojection filtration (BPF) [13,15,18-20]
formulae. Interestingly, the rapid advancement of cone-beam CT [21] has a significant impact on the
corresponding development of fan-beam and parallel-beam CT as well. In the fan-beam case, the new
formulae enable the exact reconstruction of a local region from a super short scan [22,23] or from a
transversely truncated dataset [24]. In the parallel-beam case, a class of non-Radon-transform-based
formulae were reported [25].

The accumulation of all these impressive new results has motivated researchers to revisit the theoretical
foundation of CT. One major question we have is whether we could use one fundamental formula to
generate all the CT formulae recently discovered. The answer to this question will not only reveal the
internal relations among the existing formulae but also suggest the new directions of the CT research.
Some important advances have been made in that aspect. Katsevich [21] developed a general scheme
for FBP cone-beam reconstruction based on the Radon formula. Chen et al. [23,26] and Zhao et al. [15]
developed the unified schemes for divergent beam reconstruction based on the Tuy formula [27].

In this paper, our goal is to provide an intuitive and comprehensive framework based on a new
and flexible two-step reconstruction formula. First, we develop various formulae in the parallel-beam
case. Then, we translate them to the divergent-beam case via the relationship between the parallel and
divergent projections. While our formulae are consistent with most recent findings, some hidden flaws
are identified and fixed in several publications.

The paper is organized in an intuitive and self-contained manner, and goes from 2D to 3D, and from
parallel- to divergent-beam cases. In Section 2, a two-step reconstruction formula for 2D parallel-beam
CT is introduced, which can generate existing and new formulae for 2D parallel-beam reconstruction.
In Section 3, the parallel-beam formulae are translated to fan-beam geometry. Using the 2D CT as
a template, we then expand the formulae to the 3D case, in which the long object problem is also
considered. In Section 4, the 3D version of the two-step reconstruction formula is introduced, which
generates various formulae for truncated 3D parallel-beam projection. In Section 5, the parallel-beam
formulae are translated for cone-beam CT. Finally, we conclude the paper in Section 6.
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Fig. 2. 2D parallel-beam reconstruction geometry. (a) A parallel-beam projection, and (b) the Fourier transform of the projection
profile in the Fourier space.

2. 2D parallel-beam reconstruction
2.1. Theclassical formula for 2D parallel-beam reconstruction

Let us simply recall the classical formula for 2D parallel-beam reconstruction and introduce the
necessary notations [2]. In the 2D spdeg ¥ (7) is an object function to be reconstructed (see Fig. 2)

whose Fourier transform @(E). According to the Fourier theory, we have
/ / exp 2mk: 7)dkydks Q

wherer = (z,y) andk = (ki, k2) are 2D vectors in the real space and Fourier domain, respectively. In
the polar coordinate system, Eq. (1) is expressed as

2m s
/ / exp 2mk: 7)kdkdf (1a)

/ / k) exp(2mik - 7)|k|dkdf. (1b)

where the standard polar coordinéte ) with 0 < k£ < 00,0 < 6 < 27 is used in Eq. (1a) while a
signed polar coordinatg:, ) with —oco < k < 00,0 < 6 < 7 is used in Eq. (1b). By the way, starting
from (1a) a Tuy-type framework for fan-beam reconstruction was set up [23]. In the following, our
discussion will be based on Eq. (1b).
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The unit circle with the center origin O can be defined as
le{S:O_,>S':é’2:(—sin9,cosﬁ),9€ [0,27r)} 2

Based on the two orthonormal vect@isandes:
€1 = (cosf,sinf), €, = (—sinf,cosb). 3
we set up two local coordinate systeMs: andOwwo:

s - 4)

wlzk-el,wgz * €9

The parallel-beam projection of the object along the ve@sris defined as

[e.9]

Ps(t) = Py(t) = / U(te, + uds)du. (5)

—00

The goal of the reconstruction is to calculate the functigi) from its projectionsPs(t), either exactly
or approximately.
Based on the Fourier slice theorem [2], one has

—~

U(wié)) = Pg(wy) = / Py (t) exp(—2miw; t)dt. (6)
Then, the object can be reconstructed by

U(r) = / / exp(27riw1t)]35(w1)|w1|dw1d9. (7)
0 —00
This is the classical FBP formula, which is equivalent to the Radon inversion formula [5].
2.2. The complete arcson the unit circle

We call one arc or a union of several arcs on the unit ciftlea curve, denoted by. T is called
complete ifT" intersects any diameter 6f! at least once (Fig. 3). The simplest complete curve is a half
circle, called a 189scan, i.ef € [0, ).

In the frequency domain, for a unit Vectors ¢ Q! let us define the frequency line
— — - —
L(0S) = {keRzzk-OS:O}

—

which passes the origi® and is orthogonal to the vect@s. In fact L(OS) is the line on which the
axisOw is located in Fig. 2.

The completeness of a cur¥eis dependent on whether the frequency Iih(ea)?) will sweep the
entire space when the point S moves along the ciinkeurther, when S moves along a given curyéhe
times that the frequency Iinb(O_é) sweeps a specified poiﬁte R? is denoted ag. Geometrically,
there are/; intersection points between the cuivand the diameter orthogonal to the pol?hidenoted

ass’,j =1,2,... ,Ji:, as shown in Fig. 3. In the following, all the formulae are based on complete
curves unless otherwise stated.
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Fig. 3. Completeness of arcs on the unit circle. (a) An incomplete curve, and (b) a complete curve, and%(stari.80
2.3. Thetwo-step reconstruction for 2D parallel-beam CT

For a complete curvE and a normalized weight functiQnS(E), an object function can be recovered
by

U(r) = // wg (k) exp(2miwy t) Pg(w1)|w |dw: |d6)] (8)

where|df| is the length of a different arc dn

The weight functiow(k), defined for eveng € T'and allk € L(0S), is used to avoid over-sampling
at any frequency. Since a poiktis swept by the frequency ling;: times, the weight function must

satisfy the normalization conditioE;]i1 wg; (k) = 1forall k € R2.
For a weight functionvg(k) with a general summatiom (k) = 2}]@1 wg; (K), we have

// wg (k) exp 2mw1t)Ps(w1)]w1\dw1]d0]

(k) = U (k)w(k) 9)

where the functior®(7) is called an intermediate function whose Fourier transform is denot&iBy.
Equation (9) defines a new and flexible two-stég (t) — ®(7) — ¥ (7)) scheme for the 2D parallel-

beam CT. For a normalized weight functian;(k), we haved(7) = ¥(7)sinces(k) = 1. For a weight

function wS(E)with w(E) = 0 in any region of the frequency domain, the object can be reconstructed
from the intermediate function by the second step:

W (k) = @(k)/w(k)
or equivalently
U(7) = O(F) * « W (F)
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1 - -
W (7) = / —— exp(i27k - 7)d*k.
r2 w(k)
Here ** denotes the 2D convolution iR2.
The inner integral in Eq. (9) is called filtered projection

Ps(t) = / - wg (k) exp(2miwy t) Ps (w1)|wr |dwr (10)

—00

2.4. Various reconstruction formulae

There are many ways to choose the weight function, and different weight functions lead to various
reconstruction formulae. To demonstrate the flexibility of the two-step scheme (9), in this subsection
let us generate not only the existing FBP, backprojection filtration (BPF), backprojection (BR) and
reconstruction formulae, but also two new formulae by specifying suitable weight functions.

1) Weight function i: wfé(l?) = wi(w1€) = Ag, whereAg denotes a real number dependent on the

Jg

source position so that the weight funct'rm@(l?) is normalized, i.eqi(k) = 5 Ag; = 1.
j=1
The filtered projection in Eq. (10) can be written as

. A o0 . ~ . .
Ps(t) = 2—; / exp(2miw1t) Pg(wr)(2miw ) (—isgn(wi))dwy
Agd 1

= ga(Ps(t) * —)

it

where * denote the 1D convolution operator.
From Eq. (8) or Eqg. (9), one arrives at the following reconstruction formula
1 d

V() = () = 5 [ AsT(Ps(t) x )laf (11)

If I'is a 180 scan (As = 1), one obtain the standard FBP formula for parallel-beam CT

W () = % /Oﬂ %(Pg(t) « Lyan.

Tt
2) Weight function ii: wi(k) = w¥(wi&) = iAssgriw;), where the real numbeds satisfies

. I
w'(k) = 3 Agisgnwi) = isgn(kz) .
=1
The two-step formula (9) becomes the BPF formula for parallel-beam CT:

. 1 d
" ()= — [ As—Ps(t)|db
7= 57 [ AsgPs(olas

~11 -

o (F) = U(F)isgriks)

3 1
(r) = 2" (z,y) * —,
Y
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where the convolution is on the second variaptmly.
If I'isa 180 scan Ag = 1), one has

y 1 [Td
i) =— [ =P
)= 5- | R

3) Weight function ii: w’(k) = w§’(w1€1) = £ with Z Agi = 1.

J-.
The summed weight function’ (k) = Z = ‘k‘ Z Agi = |_,1;‘

The two-step formula (9) becomes the BP formula for parallel-beam CT.

o / AgPs(t)|df)]

For a 180 scan anddg = 1, one has

() = /0 ' Ps(t)d6.

J_.
4) Weight function iv: w% v(k) = w (wi€1) = Aglwi| with Z Agj = 1.

The summed weight function is™ (k) = Z Agilwi| = |

Jj=
The two-step formula (9) becomes thefeconstructlon formula

For a 180 scan anddg = 1, one has
, 1 [T d?
V() = ——= — P .
() =~ /0 o Ps(t)ds

5) Weight function v: w%(k) = wi(wi&)) = a5

241
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1

The summed weight function is” (k) = Z Msmm ool

The two-step formula (9) becomes a new Welghted backprojection (WBP) formula

- -1 0 1

() = ®"(x, y) * 222 <8—y¢>”(x,y)> * onZy’

where the convolution * is applied on the second variable
For a 180 scan, takingds = 1 one has

L[ 1
r)—/o PoO) g

For a compactly supported functidn(7), after®* () is calculated one can calculate derivatives first
and then reconstruct the object function via the finite inverse Hilbert transform [24]. As compared to
the traditional BP algorithm, the advantage of the WBP algorithm lies in that the second step can be
implemented line by line.

6) Weight function vi: w¥ (k) = w¥(wiéy) = —4s; ,w.thz Agi = 1.
The summed weight function is¥ (k) = Zk: ;f’iﬁg ==,

J:
The two-step formula (9) becomes

. 11
8(7) = [ AsPa(t)+ = (a0

For a 180 scan, takingds = 1 one has

1
7t sin 0

BV () = / Pyt

We temporarily call this formula the weighted Hilbert transform (WHT) method. As compared to the
BPF algorithm, the order of the derivative operation and Hilbert transform is reversed. That is to say, in
WHT we take the derivative of the intermediate image, instead of the projection dataset.

The FBP [2,22] and BPF [24] are well-known exact algorithms. The BP algorithm [3]Aand
reconstruction [4] are well-known approximate algorithm. The reconstruction from a BP intermediate
function®%(7) to the object function (#) was also studied [3,28]. To show the fertility of the two-step
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Fig. 4. Fan-beam reconstruction geometries for points O (a)Caid) respectively. The complete region of the scanning
trajectory is shaded in gray.

scheme, we have introduced the two new algorithms: WBP and WHT. Detailed comparison of image
guality and noise performance between the new and existing algorithms will be presented in a separate
paper.

3. Fan-beam reconstruction
The fan-beam reconstruction is to calculate the funcfigi) from its fan-beam projections, either
exactly or approximately. In Fan-bean CT, a lo€usonsists of one or several continuous curves in the

2D spaceRk?, as shown in Fig. 4.
The fan-beam projection of the object functidni) with respect to the locuS' is defined as

P (i) = /O T W08 + i)l (12)

for everyS’ € C and every unit vectof € Q.

The two elementary relations [22,29,30] between the parallel- and fan-beam projections are shown in
Fig. 5, which will serve as the bridge between divergent and parallel-beam reconstructions.

In the 2D spacek?, a unit circle centered at a poi6t is defined as

= -
Qé = {S:OS: éy = (—sinb,cosh), 0 € [0,27r)}.

For a pointO ¢ C, the projection of the locu§' on the unit circIe.Qlé is defined as
~ = = =
I'(C,0)= {S € Q5 : 08 =05"/|05"],5" € c} .

If I'(C, O) is complete on the unit circl@l , we say that the trajectory is complete with respect to,
or thatO is a complete point of the locus C. In the 2D space, the integrals along all the lines through a
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Fig. 5. Two basic relations between parallel- and fan-beam projectipfis; -V (z,y)dzdy = s . [ (x,y)dzdy
= I 55 J o 9)dpde, 7, W(w,0)dz = [ W(w,0)dz + [ ¥(w,0)da.

complete point are known. The set of the complete points is called the complete Region of th&,locus
denoted as R(C), as shown in Fig. 4.

Our general conclusion on the fan-beam reconstruction goes as follows. For anyipaire complete
region R(C), the value of the intermediate functidrigr), % (), &% (), ¥ (7), ®*(7), @V (), defined
in the above section, can be calculated from fan-beam projection as well. This is due to the two
relations between parallel- and fan-beam projections. Siri¢g) = ¥ (), the complete region can be
reconstructed from the fan-beam projections.

In order to translate the parallel-beam formulae to the divergent-beam case, let us exemplify a three-
step method with the well-known FBP formula [22]. This framework will be used to obtain all the other
divergent-beam formulae.

Step 1. Formulate the parallel-beam reconstruction at the origin

In Fig. 4a, we suppose that the origihis a complete point of the locus, i.e.,O € R(C) and hence
the projection of the locu€’, I'(C, O), is a complete curve on the unit circle. \alssume that there
exists the parallel projectioRs(t) for everyS € I'(C,O). For a given pointS € I'(C, O), the local

coordinate system Otu is defined by the origirand two unit vectorg’y = 05 and 1 (obtained via
rotatinge; clockwise by 90), as we did in the above parallel-beam case.
Based on Eqg. (11), the value of the object function at the origin can be calculate as follows

. 1 d
T(0) = 3 (0) = — Ag &
(0) (0) o /F(ao) s

_ ! 4
N 272 r(c,0) s dt

(Ps(t)
t=0

)|df)|

1
*_
7t

> 1
/ Ps(t +t’)§dt’|d9|.

—00

t=0

Step 2. Replace the parallel-beam projection by the fan-beam projection.
Please see Fig. 4a. Recall th#tis the intersection point between the half straight ling and the

_— — RN
locusC, i.e.,05/|0S'| = OS = &,. S € C is another point on the locus besidé whose local
coordinates in the system Otu &€ (¢, u):

— s

QI Ix = _ Ix =
t=558"-e¢1 =058% -¢e¢,u=08"-é.
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Whent = 0, the pointS™ coincides the poin§’.
As shown in Fig. 5, we have the following relations between the parallel-beam projétti@n and
the fan-beam projectiopg:« (77), @ € 21,

o0 , 1 , ™ 1
/Oo Pg(t—l—t)ydt = /ﬂps/*(w)(—eg cosvy + €1 sm'y)ﬁd’y

Ps(t) = pgr(t,u) (—€2) + Psr(1,u)(€2)-

Therefore, the fan-bean reconstruction formula for the origin is

-1 d
T(0) = — Ag —
(O) 27T2 /F(C,O) o dt

where the derivative operation is implemented as

™
- - 1
/ P (t,u) (—€2 cosy + €1 siny) ——dr|db)|,
Ny - siny

d /7r (=8 cosy + & siny) dry
— - —& Cos €1 sin
dt|,_o ) » Psr+(tu) 2 Y 1 Y sin
. 1 N . Lo L Lo dry
= lim —— [pgr+(—€3 cosy + €1 siny) — pgr(—€, cosy + €1 siny)|—,
Sk 87 S——_)/S/* ) gl o s 7y

andAg is dependent ofi (C, O). .
Step 3. Translate the fan-beam formula to an arbitrary péint R(C).
See Fig. 4b. Treating any complete pointc R(C') as a new origin point, we have

~ -1 d
( ) 27T2 /F(C,O) o dt

wheresS goes alond’(C, O), andAg is dependent off (C, O).
Similarly, the derivative operation is implemented as

s
- - 1
N £1 sin y)——dny|dd),
t”:o /_Fps (. (—€acosy + e smv)sim |do)|

d i =z z . d"}/
— / Dgr(f,a)(—€2 €08y + €1 siny) ——
dt ;g ) "5 siny
. 1 T 2 2 . 2 2 . d’Y
= lim 7/ |:p5/*(—62 cosy + é1siny) — pgr(—egcosy + €3 sm'y)]‘,—.
N S—>/S,* ] gl o S 7y

. - . = S
The local coordinate systemta is determined by the origiv and two unit vectorg, = OS andeé;
(obtained via rotating, clockwise by 90). For example, the coordinates of the source pos#itne C
are

= >, —_— ~ >

f=08".8 =958% ¢,i=08" &

In other words, the form of the formula has no change except that the point O is replacedg use
— .
the notationg’ = OO, and¥(7) = ¥(0).
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Repeating the above three steps, we have the following explicit formulae for the other five intermediate
functions:

1 d )
2 As IF - i) (—2)) |0
2 /F(C,O) 5 dt‘,g: (ps @, U)( 2) + P (ia) (= 62)) |do|

U (0) :/ 66 Ag <ps/(52) +PS’(—52)) |d6|

d%(0) =

W (A 1 > = =
0 =1 r(C,0) 45 i =0 <ps/*(£’f‘)(62) +p5'*(£’ﬂ)(_62)) 6]
~ AS = =
q)v = P —— ’ 1 —
)= [ o Ty (s p52)) 109

~ 1 A Q - - 1
V(0) = / > PS/(_éQ cosy + €1 siny) ——dv|df)|.
r(c,0) sind sin

After the value of the intermediate function has been calculated in the complete region of a locus,
the next step is the same as in the parallel-beam case. One can either use the intermediate functions
for an approximate reconstruction or exactly reconstruct the object function from them. They allow the
FBP [22,23], BPF [24], BP [3]A reconstruction [4,31,32], new WBP and WHT for image reconstruction
from fan-beam data. R

Note that the above lambda reconstruction formdi&,(0O), is based on the even extension of the
projection data. However, in our former paper [31] we claimed that the lambda reconstruction can be
based on either the even or odd extension. Now, we realize that in [31] Formula (9) based on the odd
extension is not generally correct, because Eqg. (31) must hold on the whole plane instead of at only one
point z( to obtain Eq. (32). Therefore, Theorem 1 in [31] does not hold generally. As a fix, the correct
result has appeared in our new paper [32].

4. 3D par allel-beam reconstruction

4.1. Inverse Fourier transformin different coordinate systems

In the 3D spacek?, ¥(7) is an object function to be reconstructed whose Fourier transfo@r{ﬁs.
According to Fourier analysis, we have

/ / / exp 2mk 7)dk1dkadks

wherer = (z,y, z) andk = (k1, k2, ks) are 3D vectors in the real space and Fourier domain, respectively.
In the spherical and cylindrical coordinate systems, the inverse Fourier transform is expressed as

2m
/ / / exp 2mk 7)k*dk sin 0dfd¢ @)

/ / / k) exp(2rik - 7)k*dk sin 0d0de (b)
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k, Kk,

Cone-beam Reconstruction

Radon Tuy Formula
Formula Formula (14)
Signed . Signed
Spherical Sphe.rlcal Cylindrical
; Coordinate .
Coordinate Svstem Coordinate
System Y System
Inverse Fourier Transform

C

Fig. 6. Different coordinate systems for the inverse Fourier transform. The spherical (a) and cylindrical (b) coordinate systems
for the inverse Fourier transform lead to different schemes for cone-beam reconstruction (c).

:/0 /Oo /OO U (k) exp(2mik - 7)|k,|ak,dksdp o

as shown in Fig. 6.
In Formula (a), the standard spherical coordin@t®, ¢) is used with0 < k£ < 00,0 < 0 < 7,0 <
¢ < 2m, while in Formula (b) a signed spherical coordinéited, ¢) is used with—oco < k < o0, 0 <
0 < m, 0 < ¢ < = Historically, Tuy started with (a) to develop a fundamental formula for cone-beam
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3D inversion

Fourier transform

2D Fourier

transform

a b

Fig. 7. 3D parallel-beam reconstruction geometry. (a) A projection plane in the real space, and (b) a frequency plane in the
Fourier space.

CT [27], and the classic Radon formula

. 1 T T 62 )
\Ij(r) - _4—7T2 /0 /0 WRf(l,@, ¢) ‘l:P(sinGcos¢,sin6’sin¢,cos€) s 0d0d¢7

can be obtained from (b) easily though Radon discovered his formula in another way [5]. This is areason
why we have two different schemes [15,21,23,26] in the CT field. In Formula (c), the signed cylindrical
coordinate(k,, k3, ¢) with —oo < k, < 00, —00 < k3 < 00,0 < ¢ < 7 is used. Our discussion
will start from an improved form of Formula (c), which proves to be convenient for both parallel- and
cone-beam reconstruction [12,28] and, more importantly, make the 3D reconstruction problems very
similar to the 2D counterparts. This is the elementary difference between our scheme and the existing
ones.

In (c), wheng increase from O tar, the planeOk ks scans every point in the frequency space once
and only once (Fig. 6b). We will keep this observation in mind when we deal with more complicated
cases. Two related concepts we will use are the complete curve and weight function.

4.2. Complete curveson the unit sphere

As shown in Fig. 7, in the 3D spade?, ¥(7) represents the object to be reconstructed, whose Fourier

transform is denoted by (k).
The end points of all the unit vectors form the unit sphere in the spdce

Q:{SeR3z|(7§|:|53|:1}. (13)

A curveT on the unit spher& consists of a number of differentiable segments, each of which has
the tangential direction at every poink. is called complete of if it intersects every great circle of
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Q Q 45 B
r‘\/ é:r
12 0 Zz
) >
k, k,
a b

Fig. 8. Completeness of curves on the unit sphere. (a) Three symmetrical arcs starting from the point (0, 0,1) are extended
downward. Before they pass the horizontal equator, they are incomplete (thick lines); then, they become complete (thin lines);
and (b) any continuous and piecewise differentiable tface from A to its opposite point B is a simple complete curve, with

the simplest complete curve being half a great circle.

2 [33,34]. Clearly, half a great circle is the simplest complete curve. Another simple complete curve
is a continuous and piece-wise differentiable curve connecting two endpoints of a diameterfAB of
denoted byl" 45 (Fig. 8). Again, in this paper all the formulae are based on complete curves unless
otherwise stated.

For a point S on the unit sphere in the frequency space, the plane through thebaigthorthogonal

to the normal vecto®S = &
—_— - - ——
I(0S) = {keR3:k-OS:O}

is called a frequency plane (Fig. 7b). When the point S moves along a completd Gtinesfrequency
planeﬂ(@) scans the entire frequency space. When the point S moves along a completE,dheve
timfzs the pIané[(O_é) passes a given poi@tcan be viewed as a function defined in the Fourier domain
J(k), or Jg, satisfying that](ck) J(k) for any real numbet # 0. Geometrically speaking, the great
circle orthogonal to the vectdrintersects the curve at.J (k) points, denoted aSJ,g =1,2,...,J(k).

For a complete curve](k) > 1 everywhere. For half a great circle, we hawg:) = 1 over the entire
space. A concrete complete curve andJit¢) function are given in Fig. 9.

4.3. The 3D version of the two-step formula for parallel-beam problem

As shown in Fig. 7, for every poirfi € T", we define a local coordinate system in terms of three unit

vectorses = O_S“, ¢ following the tangential direction df at S, andes = €5 x €;. The space vectors
and frequency vector have the following components respectively:

F_’37
wg =k - €3.
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Fig. 9. A complete curve and its J(k) function. (a) A curve consisting of three orthogonal quarter great circles, i.e., the trajectory
when a point is moved along the path {61, 0)— (1, 0, 0)— (0, 0, 1)— (0, 1, 0), (b) J(k) is equal to 3 inside the two regions
marked by the red lines and 1 elsewhere, and (c)—(f) four representative positions of the frequency plane.

The parallel-beam projection alo@ is defined as

[e.e]
Ps(t,s) = / U(te] + séa + ues)du,

— 00
whose Fourier transform is

—~

Pg(wy,we) = / Ps(t, s) exp[—2mi(wit + was)|dtds.
R2

In the real spac&?, the plane Ots is called a projection plane (Fig. 7a).
The Fourier transform of the projection and the object are related by Fourier slice theorem

Pg(wi,ws) = U(k)

k=w1€1+ws€s ’
If the projectionPs(t, s) is known for all points S on a complete curethe object functionl () can
be recovered from its Fourier transforbr(k):

—~

U(F) = / U (k) exp(2mik - 7)dk>
R3
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Fig. 10. When S moves along a continuous curved segment, the frequency plane moves continuously in the frequency space.
The segment can be divided at M points and approximated as a series of great arcs, and the motion of the frequency plane can
be approximated a series of small rotations. H&¢&,, 1 denotes the length of the great arc between the two pSinend

Sn+1. For simplicity, we further assume that the segment is differentiable.

:// . exp(2m'l€-F)ﬁs(wl,wg)ws(l;)|w1|dw1dw2d9 (14)
rJ0.S)

wheredd is the length of the differential arc alorg Different from 2D casejf is always positive here.

For simplicity, the integration pIanH(O_S*) is denoted byR? in the following. See Fig. 10 for more
explanation on Formula (14).

The weight functiom;s(E) in Eq. (14), defined for every < I" and allk € H(O_S“), is used to handle
the over-sampling of frequency components. Since a frequency Edﬁrﬂwept by the frequency plane
J;: times, it is required that the summed weight funct@j’i1 wS]-(E) =1,whereS’,j =1,2,...,J;

k
are the intersection points between the curve and the great circle orthogonal to thekvector
The reconstruction process based on Eq. (14) consists of the three steps: (1) calculate the Fourier

transform of every measured projectiéty(t, s), (2) weight the Fourier transforrf?s(wl,wz) by a
weight functionug(k)|w: |, and (3) reconstruct the functioh(7) via a 3D inversion Fourier transform
(Fig. 7). To our best knowledge, it is the first time that this formula is explicitly given, which can be
considered as an improved form of the inverse Fourier transform in the cylindrical coordinate system.
When an object can be fully covered by a parallel-beam, the reconstruction problem is solved by
Eq. (14) or other equivalent formulae [28] such as the classical Radon’s [5] or Orlov’s formula [33,34].
For a long object, such as human body, it is impossible for an x-ray beam to cover the entire object.
Therefore, a more practical problem is to reconstruct a part of the object from truncated projections
(ps(t,s) known in a region of the projection plane Ots). This is called the long object problem of 3D
CT[12,28].
To deal with various cases, let us generalize Eq. (14) into a more flexible two-step form. For a general

weight functionwg; (k) whose summation is denoted Eji1 wg; (k) = w(k), we have

O (i) = / / exp(2mik - 7) Pg(wy, ws )wg (k) |w |dw dwado,
T JR2
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(k) = U(k)yw(k), (15)

where the function?(7) is called an intermediate function with the Fourier transfoir(ri?). For a

normalized weight function, whose summed weight functigi) = 1, the intermediate functiot ()

is identical to the object, i.e®(7) = ¥ (7). Hence, Eq. (14) is a special case of Eq. (15). For a general
weight function, the resultant intermediate functid() can be used as an approximation to the object
function, or it can be based upon to reconstruct the object fundtief) via a second-step filtration if

w(k) # 0:
(k) = (k) /w(k). (16)

For convenience, the inner integral in Eq. (15) is also called the filtered projection:

Ps(t, s) :/ exp(2mi(wit + wgs)ﬁg(wl,wz)wg(g)|w1|dw1dw2
R2

10

=_—— / exp(2mi(wit + was) Pg(wr, wa)wg (k) (—i)sgn(w: )dwy dws. a7)
2 815 R2

4.4. Reconstruction formulae for 3D parallel-beam problem

Let us develop new reconstruction formulae suitable for truncated parallel-beam projections. Our
method is to choose some special weight functions so that the filtered projection in Eq. (17) can be
calculated froma part of projection on the plane Ots.

1) Weight function I: wk (k) (Dartboard function)

For any complete curvE, based on the definition, the functidif k) has the symmetry
J(ck) = J(k)

for any real number # 0. Since the values of (k) are integers, it is reasonable to assuité) is
piecewise constant for a practical complete cutvé& herefore, we consider a piecewise constant weight
function with the same symmetmartboard function.

Let (p, o) with p € [0,00), @ € [—7/2,37/2) be the polar coordinates associated with the frequency
point (w1, w9) in the frequency planﬁ(@), the polar coordinate axis beirigv,. See Fig. 11. There
are M+1 real numberg,, with —7/2 = Gy < /1 < -+ < B, < -+ - < OBy = w/2. Furthermore, let
Oy = P + /2.

Now for a source point S on a complete cuive.e., S € I', we define the normal weight function
wk (k) satisfying

’U)é‘(pv OC) - dms 5m<04 < ﬂm-{-hm = 0’ 17 .. .7M -1
5 = wf (18)
ws(p’a—'—ﬂ-) _wS(paa))

whered,,, m =0,1,2,..., M — 1, areM real numbers. Since the weight function defined in Eqg. (18)
looks like a dartboard marked with the same scores at opposite positions, we call it a dartboard function.

In the frequency pIanH(O_é), we denote a basic function as

1 ae(—n/2,m/2
by =hia) = {1 & ECTETY.
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Fig. 11. (a) A dartboard function, and (b) the product of the Dartboard function and the sign function.
Proposition. The product of a dartboard functiovré(%) and a sign function sgw; ) can be uniquely
decomposed as a summation of basic functions, i.e.,

M-—1
Sgr((d1)u]§(u)1,u)2) = Z emh(a — apy), (29)

Proof. First, it is easy to verify that the decomposition holds with the giwgnm =0,..., M — 1.
For example, for the regiofiy<a < (1, the two sides of Eq. (19) are identical:

1 1 1 1
§(d0 +dM,1) — §(d1 — do) — §(d2 — dl) — .= §(dM,1 — dM,Q) = dp.

Then, we can show that the coefficieats,m = 0,..., M — 1, are unigue. Suppose that there is another
decomposition

M—-1
Sgl’(wl)ws w1,w2) Z (o — ag,).
m=0
Considering the difference between the two sides ef —7/2, we have

1
= §(d0 +dy-1) = co.

For the same reason, all the coefficietfts= ¢,,, form = 0,..., M — 1. This completes the proof.

I
Let the functionf g (w1, ws) = (—i)sgn(ws )wk (k k) denote the filter in Eq. (17), antl(t, s) denote its
corresponding spatial function.
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a b

Fig. 12. By the convolution theorem, a convolution in the real space (a) is equivalent to a multiplication in the Fourier domain

(b): Ps(t,s) * 1/(mwtm) < 72.]3(0.)1,&)2)}1(& — aum). Note that the 1D convolution can be done line by lirig, is a unit
vector defined by, = €1 cos a,, + €2 sin an,.

~I
Due to the Proposition, the filtgfr¢ (w;, w2) can be uniquely decomposed into a sum of several Hilbert
filters

I M-l
fs(wi,we) = (—i) Z cmh(a — o),

where(—i) h(a — ayy,) is the m-th Hilbert filter.
Based on the theory of generalized functions [35], we have

/ —isgnwi ) exp(2mi(wit + was))dwidwy = i5(3).
R2 7t
Therefore, the corresponding spatial function of the m-th Hilbert filter is given by

/ —ih(a — auy) exp(2mi(wit + was))dwdws = L(S(Sm),
R2 7Ttm
wheret,, = t cos a,, + ssin .y, s, = —tsina,, + scos a,, are the coordinates in a system rotated
with an anglex,,,. The m-th filter and its related convolution operation are shown in Fig. 12. The vector
Tm = €1 COS oy, + €5 sin avy, IS called m-th filtering direction.

Now, we obtain

M-1
fit,s) = / exp(2mi(wit + was))(—1i) Z emh(a — auy)dwidws
R? m=0

— Z C_m5 (20)
Therefore, Eq. (17) can be written as
. 10
Ps(t,s) = (Pg(t s) * *fs(t s))

21 Ot
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M-1
= ig ( emPs(t, s) * *Lé(sm)>

27 Ot Ttm
m=0
M—1
1 0
=—— Pq(t —
27r8t< mPs( 8)*7rm>
m=0

1 0 M-1
- —25<Zcm/ Ps(t +1t' cos ay, s+t sinay,) ’dt/>’
2T

where the Dirac function turns the 2D convolution (**) into a 1D convolution (*), which can be
implemented line by line. In the projection plane, to calculate the filtered projection at a given point (t,
s), we use the projection data on several lines (including its neighborhood for the derivative operation)
through the point (t, s) rather than projection data on the entire projection plane. Thus, the reconstruction
formulae (14 or 15) actually allows those types of data truncations that do not interfere the required
Hilbert filtering:

U(r) = CDI ) = 53 /675 cm/ Ps(t +t' cos ayp, s +t' smam) dt'de. (21)
w2

For example, the value at the origin can be reconstructed by

1 0
O =55 [ 5

Figure 13 indicates a weight functiod = 2) and its associated filter, which is decomposed into two
basic filters. The projection data used to calculate the filtered projeétj()@, 0) is also marked.

Now, let us study the case of the simple complete curve. For a simple completd cuysvan the unit
sphere (Fig. 14a), a weight function can be defined as

w§' (k) = sgn(k - &)sgrik - &) = sgrk - €x)sgnwy)

M—
00 1
E Cm / Ps(t +t' cos ayy, t' sin am)ydt’d& (22)
t=0 m=0 o

forallk € H(O_b)“), whereg,; = O_é is the unit vector frond andB. This weight function is normalized,
ie.,

Iz Iz
> " sgr(k - Ex)sgnws) = > sgrik - &:)sgn(k - &1(S7)) = 1 (23)
j=1

j=1

forall k € R3, wheree; (S7) is the tangential direction of the curle  at.S7, the j-th intersection point
betweer” 45 and the unit circle orthogonal o

A simple justification for that normality goes as follows. The weight funct’t@(ﬁ) takes on the
value of either 1 or-1, indicating the direction in which the frequency point passes through the frequency
plane. Clearly, when the source point S moves from A to B, the frequency plane is turned over and every
frequency point is swept once and only once if two passes in the opposite directions are not counted. In
Fig. 14, we show the weight function and its filter. To explain the normality of this function in detail, an
intuitive analogy is provided in Appendix A.
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Fig. 13. Example of the dartboard functimﬁ(l?:') and its decomposition. For a given weight function (a), its filter (b) can be
I .
decomposed into a sum of two basic filters (c) and (#)(w1,w2) = —iws(k)sgnw:) = —2i/3h(a) — i/3h(a=/2) with
the spatial functiory’ (¢, s) = 206s) 4 00 For computation of the filtered projection at the origin, only the projection data

smt

indicated in (e) and (f) are involve

3ms

d.

Associated with the weight functianfgl(l?), the filter and the convolution kernel are

~I1

Is (wi,we) = —isgr(k - &) = —isgn(k - 71),

Fts) = —d(s1),
7T7f1

and the filtered projection b

19 [ps(t

ecomes

1
)8)*_t:|a

Tt
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Fig. 14. Weight functionv}! (w1, w2) and the filter related to the curi& z. In (@) and (b)I'a s is a curve connecting the two
end points of the diameter AB and FF’ is the intersection line betvFé(@IS) and the plane orthogonal & = OB, 7 the

unit vector along the projection of the vectron the pIaneH(OqS); (c) and (d) show the filter in the Fourier domain and the
direction of the convolution in the real space, respectively.

where the unique filtering direction is alofig, which is the unit vector along the projectiona&f on the
planel1(09):

—

71 = (€x — (€r - €3)€x)/|€x — (€x - €3)éx].
The reconstruction formula (21) now becomes
) = —%/ 9 /oo Ps(t+t' cosaq, s+t sinal)ldt’de. (24)
272 Jp,, Ot /oo '
For conveniencer t1,s1 etc. are shown in Fig. 14(d).

2) Weight function I1: wif (k) = wl (w1 &) + was) = Agisgrw ) with real numbersi s dependent
on the source positions S.

v(

3
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Now, Eq. (17) is simplified as
~ As 0
Ps(t,s) = 5= 5 Ps(t.s). (25)
The summed weight function
J (k)

Iy =" Agsisgriws).
j=1

Suppose thaw !’ (k) # 0 in the Fourier space. We define

1 o o
W (7 :/ — exp(27ik - P)d3k. 26
(7) o w1 (%) p( ) (26)
Eq. (15) becomes

oL (7) = / A, 875135@ s)df
U(r) = () 5 5« W (7). (27)

SinceW ! (i) is generally a 3D function, to reconstruct the obj&¢F) we must perform a 3D convolution
on the intermediate functio®’/ (). To obtain a formula which is suitable to reconstruct a part of the

object, one needs to adjust the constdgtso that the summed weight functiarn? (k ) is reduced to a
1D or 2D function and the 3D convolution is reduced to a 1D or 2D convolution. In a general sense, this
remains an open problem.

Fortunately, in the special case of the simple complete clinve (Fig. 14a), one can takdg = 1.
According to Eqg. (23) one has

T T
> sgrwr) =Y sgrik - & (7)) = sgrik - ).
j=1

j=1

Therefore, we obtain the summed weighted function and the second-step convolution kernel as

wh( Zw”l Zzsgr(wl — isgn(k - &)

J=1

= _ngr(];: : gﬂ'))

wnl(];)

w7 = /R ) —isgr(k - &) exp(i2nk - 7)d>7 = L8(t;)8(th),

wheret’ = 7 €, t) = 7 ér1,th = T €z, and ey, €ro, €, are three orthogonal normal vectors.
Therefore, Eq (27) becomes
1 0
(P = — — Ps(t, s)df
(") 2 ot 5(t:5)

Fas
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oo
U(F) = — / S (7 4 t’ar)idt’ (28)
o t!
where the 1D convolution is performed. This formula is also suitable to reconstruct a part of the object
from truncated data, because one just needs to calculate locally the intermediate f@détiohr- /e, ),
on the line through the poim‘tand along the directio#i,.
3) Weight function 111 wi (k) = wh (w1 + wes) = o5
Equation (17) becomes

PHI( s) = Ag /R2 exp(2mi(wit + wgs))ﬁs(wl,wg)dwldwg = AgPs(t, s). (29)

Then, we obtain a backprojection algorithm as

(k) = U(k)w' (k) (30)
. Jg Jx . ,
wherew (k) = 3 Agjlwi| ™t = Z Agilk - e (s7)h
7j=1

The first stepPZ!!(t,s) — fl)f”( ) is localized but the second stdp//!(#) — W(7) is not local
unless the curvé&' is properly specialized, such as the great circle of the unlt sphere. The convenient
way is to viewd !/ () as an apprOX|mate local reconstruction formula and omit the second step.

4) Weight function 1V wS (k) = w{gv(wlel + waéy) = Aglwi].
Equation (17) becomes

PV (t,5) = Ag /R2 exp(2mik - f’)lgs(wl,wg)w%dwldwg

As T P(t, s). (31)

4772

Then, we obtain the lambda-type local reconstruction formula

(I)IV(F) =12 /Agatz Ps(t, s)db,

@IV(E) = U(k)yw' (K), (32)

- Iz J5 - .
Wherewlv(k) = 2 ASj’wll = Z ASj‘k . 51(53)’

Similarly, the convenlent Way is to view’V () as an approximate local reconstruction and omit the
second step.

5) Weight function V: wY (k) = wY (w1 €] + waé) = 1.

The weight function is 1 for every point on the frequency plane. The summed weight function is
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Eq. (17) is simplified as

- 10 . ~ )
Pg(t, s) = o Bt /R2 exp(2mi(w1t + wes) Pg(wi, we)(—i)Sgnw1 )dwy dws

1 0

1
=——— [ Pg(t+1t. s)—dt. 33
27r8t/R s(t+ ’S)W (33)

The reconstruction formula (15) becomes

1 9 1
V(A =—— [ = [ Ps(t++t, s)—dt'do
(") o /p ot /R s(t+ ’8)7rt’

oV (k) =V (k)J(k). (34)
On the projection plane, the convolution in Eq. (34) is performed along the tangential direction of the
curvel' atS. IfT" is half a great circle on the unit ball, the frequency pointis scanned by the frequency plane
exactly once,J (k) = 1, ®V () is an exact reconstruction of the object function, ie",(7") = (7). If
the curvel is close to half a great circle so théfk) = 1 in the main part of the Fourier domain and

J(E) equals an integer close to 1 in the rest p&rt,(7) is a good approximation of the object function,
®V(7) ~ ¥(r) . Otherwise,®V () is no longer a good approximation @f("), and the second step
filtration is necessary.

For a simple complete curdé, g, Formula (34) can be expressed as

1 0 1
V(F) = —— — | Ps(t+1t,s)—dt'dd
(7) o /FAB at/R s(t+ ’S)m‘,’
oV (k) = W(k)J (k).
Therefore, the Palamodov’s parallel-beam formula
1 0 1
U(F) = —— — [ Ps(t+1t,s)—dt'do P1
=55 [ 5 [Pttt aran P1)

which is referred to as Theorem 3 in paper [36] and Theorem 4.3 in the monograph [37], is generally
approximate. In the proof in [37], the flaw is no compensation for the fact that the frequency plane may

scan some regions in the frequency space more than dl(lée & 1).

5. Cone-beam reconstruction

Similar to the 2D case, let us translate the reconstruction formulae for 3D parallel-beam case to the
cone-beam CT with the well-known relations between the parallel- and divergent-beam projections in
Fig. 5.

5.1. Atrajectory and its complete region

A trajectoryC consists of a finite number of curve segments in the 3D spa¢along which an x-ray
source goes (Fig. 15). The cone-beam projection of the object funétighalong a trajectony' is
defined by

oo —
pg (i) = / (08’ + 7il)dl
0
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a b

Fig. 15. Imaging geometries for cone-beam reconstruction at péins) andO (b) from data collected along a general
trajectory C.

forall S’ € C, andni € Q. )
In R3, the unit sphere centered at a painis defined as

= -
Qé:{S€R3:|OS|:|ég|:1}.
For a pointO ¢ C, the projection of the locu§’ on the unit spher@ ; is defined as
~ = = =
I'C,0) = {S €Qy:08=05/05,5 € C} .

If T'(C, O) is complete on the unit sphefgs, we say that the trajectoryy is complete with respect to
O or that the poin© is a complete point of the trajectafy The set of the complete points is called
the complete Region of the locd denoted as R(C). In contrast to the 2D case, integrals along some
lines through a complete point may be unknown. This fact causes some difference between fan- and
cone-beam reconstruction.
A special trajectory is the differentiable cur@g, z/, which starts from pointl’ to B’ with the chord
A’ B’ through the origin O, see Fig. 16. Cleary, - is complete with respect to any point betwe&n
andB’, but generally incomplete with respect to points beyond the cHOfsI.

5.2. Reconstruction formulae for cone-beam CT

Now, we translate the formulae for the parallel-beam to cone-beam case with the three-step method
we employed for 2D CT.
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Fig. 16. Imaging geometries for cone-beam reconstruction at poiK@$ andO (b) from data collected along the locGS/ 5.

5.2.1. Thegeneral FBP and its special case

As shown in Fig. 15, for a general trajectady without loss of the generality we suppose that O is a
complete point, i.eQ € R(C). In other wordsI'(C, O), the projection of”' on the unit spherg, is a
complete curve. We assume that the parallel-beam projeBk¢h s) are known for every € I'(C, O).

Step 1. For everyS € I'(C, O), the local coordinate system Otsu is defined by the origin O and the

three unit vectorsss = O_é, é1 the tangential direction df (C, O) at S, ande, = €3 x €1, as we did in
the 3D parallel-beam case.

Equation (22) can be rewritten as
M-—1

o0
1
Z Cm / Pg(t +t' cos o, t' sin oy, ) — dt'd6,
=0 m=0 o t

1 0

U(0) = —— -
(0) 272 r(c,0) ot

wherec,, a,, are dependent oi(C, O).
Step 2. See Fig. 15a. Recall th&' is the intersection point between the half straight ing and

the locusC, i.e.,05’/|0S’| = OS = &,. §™ € C is another point on the locus nesif, whose local
coordinates in the system Otsu are

— —_— — —
t=08".¢,=98".¢,s=08% &,,=08"¢é5.
Whent = 0, the pointS” coincides with the poin§’. WhenS”™ — S’ s — 0 is faster thart — 0.
In reference to Fig. 5, one has the relation between parallel-beam projégtions) and cone-beam
projectionpg- (1),
& 1

& 1
/ Ps(t +t'cos o, s+t sin o) —dt’ = / D+ (t,s,u) (—€3 COS Y + Ty SN y) ———dy,
S t S ” sin y
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Ps(t,5) = pgre(t,s,u) (—€3) + Dgre(t,5,u) (€3),

where the unit vectof,,, = €] cos o, + €5 sin ayy,.
Then, Eq. (22) becomes

W(0) = —i/ 4 /% lec (=& 008y + P sin 7)—Ld (35)
~ o2 r(C0) dt o Jo mPS’*(t,s,u) 3 Y m Y sin y >
¢m, Tm @re dependent ofi(C, O). Since the source p03|tio$‘|’* € C moves along the curv€ in R3,
we write the derivation in Eq. (35) a§| _, instead Ofat _
The derivative operation in Eq. (35) can be epr|C|tIy ertten as

m=0

onr M—1

d . Lo dy
7 / Z CmPsr(t,s,u) (—€3 COS Y + Ty SINY) =
—0Jo = sin 7y
1 oxr M—1
= lim ——— / Z Cm(pgr+ (—€3co87y + Ty siny) — pgr(—€3 cosy + Ty Sin7y))
S8 S——_)’S'* ) siny’

Step 3. For any complete poin® € R(C'), the reconstruction formula for cone-beam projection is
. 1 d 2m Mz‘l - - dvy
\P S = I%(F &7 —e Nm i _— 5

©) 22 /F(C,O) dt 7o /0 m=0 cnbs (t787U)( 20037 + T ein7) sin 'Yde (36)

wherec,,,, 7., are dependent on(C, O), as shown in Fig. 15(b).
Similarly, the derivative operation in Eg. (36) can be explicitly written as

o M—1

d 2 2 . d"}/
— CmP g (i 5.0 (—€3 COS Tm SIN
Tl [ 2 enmseaat-iscosy + Fmsin) T
1 2r M—1 . 5 - - d’)/
= lim ——— c e (—e3 cos TmsSinvy) — pg/(—€és cos Tm Sin .
sty == ~/O mZ:o m (s (—€3co8y + T siny) — psr(—€3cosy + T, 7))Sirw

The local coordinate syste@¥su is defined by the or|g|@ and the three orthonormal vect@rs= OS
¢1 (the tangential direction af(C, O) at S), ancE, = é5 x ;. For example, the local coordinates of
S™ e C are

= —_— = =
t=08".6,=565"%.¢6,5=08% 6,0=08%é;.

Formula (36) is a general cone-beam FBP formula, which does not need the assumption that the object
must be supported inside the trajectory. When the trajectory is a finite uniéf*efurve, this formula
coincides with the Katsevich’s general scheme [21].

Inthe following, we directly give the associated cone-beam reconstruction formulae without describing
the corresponding three steps. For the cone-beam trajeCtery (Fig. 16) and any point on the chord
A'B',i.e.,0 € (A, B'), using the three step-method, the reconstruction formula (24) can be obtained as

v(0) L / d /% (=& 4+ 7y siny) -2 dg
=—— — Pare(i 5oy (—€3cO8 Y + T1siny)——db,
272 00 4 1,0) At |70 Jo S (8,5.a) sin
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. 5 - - —_—
with 71 = (& — (& - E3)2x ) [18x — (& - E3)2:, & = A'B'/|A'B]

This formula is consistent with the filtered backprojection formulae (FBP) developed by several
groups [13-17].

5.2.2. The general BPF and its special case
For any complete poir® of a general trajectorgZ, i.e.,O R(C), basedon Eq. (27), the intermediate
function®’/(0) can be calculated from

1 d
®'1 (O / Ag—

However, generally speaking, it is an open question how to reconstruct the object fub¢tinrfrom
@II(O)

Fortunately, for the trajector¢ 4 5 (Fig. 16) and any point on the chori B/, i.e.,O € (A’, B'), by
Eqg. (28) the intermediate function can be calculated by

(I’IH(O) 1/ d
2T JT(C 41 51,0) dt

Though Eq. (28)

<p5/*(£,§,a) () + P (i) (—53)) do.

(psz*(t i u))( ) —i—ps/*( )(—gg)) do.
t=0

%0 1
() = — / O + t'er) —dt, (37)
oo s

—_— —

with &, = A’'B’/|A'B’| requires the value ob!/1(O) for all pointsO on the lineA’'B’, the object
function ¥ () at any point” betweenA’ and B’ can be reconstructed frod'/!(0O) using the so-called
finite inverse Hilbert [24,38] if the object function valdg) is zero outside the line segme#tB’.

This formula is consistent to the backprojection filtration formulae [13,15,18-20]. In [13,18,20], the
BPF is introduced based on the odd extension of the projection data. The even extension was introduced
in [15] when the framework based on Tuy’s formula was set up. However, according to our current
understanding, Theorem 3 in [15] is compromised by a minor conceptual flaw. In the proof of Theorem 3
in [15], Eq. (38) holds forr € (a1, a2) instead of on the whole line because of the condition of Eq. (34).

It is not permissible to apply the inverse Hilbert transfaky, _,, on Eq. (38) to obtain Theorem 3. In

other words, there exists an essential difference between the even and odd extensions of projection. We
acknowledgement that the minor change of the phase from “the inverse Hilbert transform” to “the finite
inverse Hilbert transform” has no influence on the scheme described in [15].

5.2.3. The approximate reconstruction formulae

For any complete poinD of a general trajectorg, i.e., O € R(C), based on the relation between
parallel- and divergent-beam projections, an approximate reconstruction fuﬂx;’ﬂé(@) in Eq. (30)
and®’V (0) in Eq. (32) can be calculate from the cone-beam projection as well:

o'(0) = / )A(pS/(g?))ers'(—gS))d@

o'V (0) =

277)2 re dtg (Ps'*(f,g,a) (€3) + Py (z,5,a)(—€3))dO.
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It is consistent with the local cone-beam reconstruction formulae developed by Louis, Maass [39] and
Katsevich [40], respectively. 3
According to Eq. (34), for a complete poitt € R(C'), one can approximately reconstruct the object

by

2w
2 2 d"}/
s (— in )~ do. 38
f()/o Ps (t,s,u)( €3 COS7Y + €1 Slan)Sin"}/ ( )

~ 1 d
oV (0)=-— / —
( ) 272 F(C,O) dt

If T(C, O) is half a great circle on the unit spheg;, ¥ (O) is an exact reconstruction, i.@} (0) =

¥(0). Ifitis near half a great circlep" (O) is an approximation of the objead" (O) ~ ¥(0). For

the locusC 4. g and a circular locus, Eq. (38), as an approximate reconstruction formula, coincides with

the Palamodov cone-beam reconstruction formula [36,37] and Feldkamp formula [41,42], respectively.
Using the three-step method, the Palamodov parallel-beam reconstruction formula (P1) can be trans-

lated into the cone-beam case [36,37]:

- 1 d 2m > = dy
v0)=—-—— — / Dgr(i 5.0y (—€3 cosy + €1 siny) ——d0b,
(0= "3 P(Cyp0) Bl Jo TS ) Sy
Oe (A, B). (P2)

Evidently, the approximation in the Palamodov cone-beam Formula (P2) comes from the approximation
of the associated parallel-beam formula (P1). After we [43] pointed out the approximate nature of the
Palamodov cone-beam formula [36], he modified his proof [44,45]. However, based on our new general
reconstruction scheme, it is Theorem 3 in his paper [36] that leads to the approximate nature of his
cone-beam formula. Also, we recognize that except for the minor flaw related to the multiple scan of the
frequency plane, Palamodov’s idea to link the parallel-beam problem to the cone-beam problem is very
valuable.

6. Discussionsand conclusion

Evidently, we can extend the above discussion into the higher dimensional space to form a reconstruc-
tion theory based on truncated projections. This is a promising direction of integral geometry [37]. We
are working along this line and will report our results later.

It is necessary to underline the differences between our and others’ approaches. Since cone-beam CT
is practically important, most researchers have paid much more attention on cone-beam CT in hope to
solve the cone-beam problems directly. This makes 3D CT problems quite different from and much more
difficult than its 2D counterparts. On the other hand, in this paper 3D parallel-beam problems are first
carefully studied, and then cone-beam solutions come out in an easy way through the simple relations
between parallel- and divergent-beam projection, as illustrated in Fig. 17. This new methodology is a
primary part of the originality of this paper.

The three schemes in the CT field have come from the three different fundamental formulae: Radon’s,
Tuy’s and our new formula (14). However, since the three formulae are related to the different forms of
the inverse Fourier transform, these three schemes should be essentially equivalent. The reader needs
to choose the convenient one for their problems. Meanwhile it is acknowledged that our scheme can
generate many formulae in CT, but not all of them. For example, it is difficult to generate the BPF
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Relationship
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cone-beam
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Formula prObIem
Its form for a 3D
. - complete
in cylindrical Parallel-
Inverse coordinate curve beam
Fourier system bl
transform AR
—

Fig. 17. Steps towards the solution of the cone-beam problem in our scheme.

Fig. 18. Applicability of our scheme in the cases of discontinuous trajectories. The traditional assumption that an object be
compactly supported inside the locus is no longer necessary.

formula with the odd data extension in [13] and the fan-beam formulae in [46—48]. Hence the reader
still needs to pay attention to new methods and results in the CT field.

In conclusion, we have presented an intuitive and complete scheme for CT in different imaging
geometries including 2D and 3D parallel- and divergent-beams. A key step is the development of a new
fundamental formula starting from the inverse Fourier transforgylimdrical coordinate system. Our
results have been demonstrated to be not only consistent with the most latest main formulae but also valid
under more general conditions including a non-continuous scanning trajectory and an extended object
support (Fig. 18). Meanwhile, some minor conceptual flaws in the CT literature have been identified
and fixed. Finally, some open questions have been suggested. Our understanding is that Fourier analysis
should be viewed as the theoretical foundation of CT and that this complete scheme of CT is just another
example among many applications of Fourier analysis in modern sciences and technologies [49].

The authors thank Prof. Y. Ye with University of lowa for insightful discussions. This work is partially
supported by NIH/NIBIB (Grants EB002667, EB004287, EB0O07288, EB001685 and EB006036) and
Ge Healthcare.

Appendix A: An intuitive analogy of the weight function w’! (wy,ws)

Here we explain how we define this weight function and why it is normal.
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o
® s
L o

Fig. 19. Analogy of the weight function .Two colored balloon (red and green) have respectively moved from their original (a)
to opposite sides (b). A disk inside a sphere turned over from its original position (c) via an intermediate position (d) to the
opposite position (e).
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1. Outward-homeward function for colored balloonsin a room

A red balloon and a green balloon were respectively placed on the red and green sides of a room
(Fig. 19a). The two balloons can move inside the room and pass the two middle border lines freely.
After some time, the two balloons is found to be on the opposite sides (Fig. 19b). A conclusion can be
made that each balloon has effectively passed the border lines only once, no matter how many times the
balloon really went over the border lines.

Mathematically, one can define an outward-homeward function to indicate the motion direction of a
balloon across the border lines, which takes 1 (outward) when the balloon is going to the other side, and
takes—1 (homeward) when it is returning its original side. Note that when a balloon is going to the other
side, its color is the same as the color of the first border line it comes across; when it is returning, its
color is different from the color of the first border line it sees. If we call the red and green color positive
and negative respectively, i.e., sgn(red]l and sgn(greeny —1, the outward-homeward function can
be expressed as

sgn(the color of a balloon)sgn(the color of the first border line the balloon comes across).

If a balloon is observed on the opposite side, the sum of the outward-homeward function must be 1, such
asl — 1+ 1 = 1 for the green balloon in Fig. 19b.

2. Outward-homeward function for color beadsinside a ball

Now, let us imagine that a ball which is divided into two halves by a virtual disk, one half being full of
tiny red beads the other full of tiny green beads. The two sides of the disk are red and green accordingly.

At the beginning (Fig. 19c¢), the normal direction of the digk was towards to the point A. Then, one
moved S along a cunié 4 z on the sphere to point B (Fig. 19d), which is opposite to the point A. During

the movement, the ball along with its beads has been kept still and the virtual disk can sweep the beads
freely (without any interaction). One can conclude that the disk has passed every bead (either red or
green)effectively only once. Figure 19e shows an intermediate instant during the disk rotation. The
outward-homeward function for the bead being scanned by the disk is identical to the weight function
wit (wy,we):

sgnthe color of a beagnthe color the bead see when the disk comes)over
= sgn(k - &;)sgnk - €1) = wi (w1, we).

In fact, Fig. 19e is a color version of Fig. 14a.
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