
Journal of X-Ray Science and Technology 15 (2007) 235–270 235
IOS Press

Scheme of computed tomography

Yuchuan Weia,∗, Hengyong Yub, Jiang Hsiehc, Wenxiang Congb and Ge Wanga,b,∗
aBiomedical Imaging Division, VT-WFU School of Biomedical Engineering and Science, Wake Forest
University, Winston-Salem, NC 27157, USA
bBiomedical Imaging Division, VT-WFU School of Biomedical Engineering and Science, Virginia Tech,
Blacksburg, VA 24061, USA
cLaboratories of Applied Science, GE Healthcare Technologies, Milwaukee, WI 53201, USA

Received 19 June 2007

Revised 28 August 2007

Accepted 30 August 2007

Abstract. Since Katsevich’s work on cone-beam CT in 2002, a series of new reconstruction formulae for cone-beam and
fan-beam reconstruction have been published. To understand these new results in a unified way, two schemes were proposed
in the literature: one is based on the Radon formula, while the other on the Tuy formula. In the paper, we present a general
two-step scheme for parallel-, fan- and cone-beam CT based on the inverse Fourier transform. We first derive parallel-beam
formulae and then translate them to the divergent-beam case via a standardized method. This complete framework not only
provides a single mechanism for the deduction of most existing CT formulae but also generates new algorithms. Meanwhile,
along the development of this new framework some minor flaws are identified and fixed in publications. Additionally, the
traditional assumption that an object be compactly supported inside a scanning trajectory is no longer needed.

Keywords: Computed Tomography (CT), Fourier analysis, convolution theorem, Dirac function, two-step scheme, instantaneous
cylindrical system, three-step method, weighted back-projection (WBP), weighted Hilbert transform (WHT), frequency plane,
dartboard function, Outward-homeward function, J function, odd/even extension, cone-beam, complete region, trajectory
projection

1. Introduction

The British engineer Hounsfield reported the first x-ray computed tomography (CT) scanner in 1973,
with which the internal structure of an object can be recovered from projections [1]. The invention of
CT started a new era of medical imaging and nondestructive testing [2–4]. During the CT development,
the imaging system has been changed from parallel-beam to fan-beam, and eventually to cone-beam
geometry (see Fig. 1). The essence of the CT theory is to find formulae for image reconstruction of an
object from projections collected in a beam geometry along a scanning trajectory. The Radon formula [5]
is traditionally considered as the foundation of CT over several decades. The filtered backprojection
(FBP) formula in the parallel-beam case, which was developed from the Fourier slice theorem [6], is
equivalent to the Radon formula in the 2D case. The FBP formula in the fan-beam case was deducted
from the Radon formula [7]. Some cone-beam CT formulae [8,9] were also developed from the Radon
formula. Before 2002, all the exact reconstruction formulae require that the object be entirely covered by
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Fig. 1. Shapes of the x-ray beams and their projections on the detection plane (array). (a) A 2D parallel-beam, (b) a fan-beam,
(c) a 3D parallel-beam, and (d) a cone-beam.

the x-ray beam(s). In 2002, Katsevich reported the first cone-beam formula that can exactly reconstruct
an object from longitudinally truncated cone-beam projections [10,11]. Since then, a series of cone-beam
formulae [12] were developed, including FBP [13–17] and backprojection filtration (BPF) [13,15,18–20]
formulae. Interestingly, the rapid advancement of cone-beam CT [21] has a significant impact on the
corresponding development of fan-beam and parallel-beam CT as well. In the fan-beam case, the new
formulae enable the exact reconstruction of a local region from a super short scan [22,23] or from a
transversely truncated dataset [24]. In the parallel-beam case, a class of non-Radon-transform-based
formulae were reported [25].

The accumulation of all these impressive new results has motivated researchers to revisit the theoretical
foundation of CT. One major question we have is whether we could use one fundamental formula to
generate all the CT formulae recently discovered. The answer to this question will not only reveal the
internal relations among the existing formulae but also suggest the new directions of the CT research.
Some important advances have been made in that aspect. Katsevich [21] developed a general scheme
for FBP cone-beam reconstruction based on the Radon formula. Chen et al. [23,26] and Zhao et al. [15]
developed the unified schemes for divergent beam reconstruction based on the Tuy formula [27].

In this paper, our goal is to provide an intuitive and comprehensive framework based on a new
and flexible two-step reconstruction formula. First, we develop various formulae in the parallel-beam
case. Then, we translate them to the divergent-beam case via the relationship between the parallel and
divergent projections. While our formulae are consistent with most recent findings, some hidden flaws
are identified and fixed in several publications.

The paper is organized in an intuitive and self-contained manner, and goes from 2D to 3D, and from
parallel- to divergent-beam cases. In Section 2, a two-step reconstruction formula for 2D parallel-beam
CT is introduced, which can generate existing and new formulae for 2D parallel-beam reconstruction.
In Section 3, the parallel-beam formulae are translated to fan-beam geometry. Using the 2D CT as
a template, we then expand the formulae to the 3D case, in which the long object problem is also
considered. In Section 4, the 3D version of the two-step reconstruction formula is introduced, which
generates various formulae for truncated 3D parallel-beam projection. In Section 5, the parallel-beam
formulae are translated for cone-beam CT. Finally, we conclude the paper in Section 6.
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Fig. 2. 2D parallel-beam reconstruction geometry. (a) A parallel-beam projection, and (b) the Fourier transform of the projection
profile in the Fourier space.

2. 2D parallel-beam reconstruction

2.1. The classical formula for 2D parallel-beam reconstruction

Let us simply recall the classical formula for 2D parallel-beam reconstruction and introduce the
necessary notations [2]. In the 2D spaceR2, Ψ(�r) is an object function to be reconstructed (see Fig. 2)

whose Fourier transform is
�

Ψ(�k). According to the Fourier theory, we have

Ψ(�r) =
∫ ∞

−∞

∫ ∞

−∞

�

Ψ(�k) exp(2πi�k · �r)dk1dk2 (1)

where�r = (x, y) and�k = (k1, k2) are 2D vectors in the real space and Fourier domain, respectively. In
the polar coordinate system, Eq. (1) is expressed as

Ψ(�r) =
∫ 2π

0

∫ ∞

0

�

Ψ(�k) exp(2πi�k · �r)kdkdθ (1a)

=
∫ π

0

∫ ∞

−∞

�

Ψ(�k) exp(2πi�k · �r)|k|dkdθ. (1b)

where the standard polar coordinate(k, θ) with 0 � k < ∞, 0 � θ < 2π is used in Eq. (1a) while a
signed polar coordinate(k, θ) with −∞ < k <∞, 0 � θ < π is used in Eq. (1b). By the way, starting
from (1a) a Tuy-type framework for fan-beam reconstruction was set up [23]. In the following, our
discussion will be based on Eq. (1b).
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The unit circle with the center origin O can be defined as

Ω1 =
{
S :

−→
OS = �e2 = (− sin θ, cos θ), θ ∈ [0, 2π)

}
(2)

Based on the two orthonormal vectors�e1 and�e2:

�e1 = (cos θ, sin θ), �e2 = (− sin θ, cos θ). (3)

we set up two local coordinate systemsOtu andOω1ω2:

t = �r · �e1 , u = �r · �e2,
ω1 = �k · �e1 , ω2 = �k · �e2 . (4)

The parallel-beam projection of the object along the vector
−→
OS is defined as

PS(t) = Pθ(t) =
∫ ∞

−∞
Ψ(t�e1 + u�e2)du. (5)

The goal of the reconstruction is to calculate the functionΨ(�r) from its projectionsPS(t), either exactly
or approximately.

Based on the Fourier slice theorem [2], one has

�

Ψ(ω1�e1) =
�

PS(ω1) =
∫ ∞

−∞
PS(t) exp(−2πiω1t)dt. (6)

Then, the object can be reconstructed by

Ψ(�r) =
∫ π

0

∫ ∞

−∞
exp(2πiω1t)

�

PS(ω1)|ω1|dω1dθ. (7)

This is the classical FBP formula, which is equivalent to the Radon inversion formula [5].

2.2. The complete arcs on the unit circle

We call one arc or a union of several arcs on the unit circleΩ1 a curve, denoted byΓ. Γ is called
complete ifΓ intersects any diameter ofΩ1 at least once (Fig. 3). The simplest complete curve is a half
circle, called a 180◦ scan, i.e.θ ∈ [0, π).

In the frequency domain, for a unit vector
−→
OS ∈ Ω1, let us define the frequency line

L(
−→
OS) =

{
�k ∈ R2 : �k · −→OS = 0

}

which passes the originO and is orthogonal to the vector
−→
OS. In factL(

−→
OS) is the line on which the

axisOω1 is located in Fig. 2.

The completeness of a curveΓ is dependent on whether the frequency lineL(
−→
OS) will sweep the

entire space when the point S moves along the curveΓ. Further, when S moves along a given curveΓ, the

times that the frequency lineL(
−→
OS) sweeps a specified point�k ∈ R2 is denoted asJ�k. Geometrically,

there areJ�k intersection points between the curveΓ and the diameter orthogonal to the point�k, denoted
asSj , j = 1, 2, . . . , J�k, as shown in Fig. 3. In the following, all the formulae are based on complete
curves unless otherwise stated.
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Fig. 3. Completeness of arcs on the unit circle. (a) An incomplete curve, and (b) a complete curve, and (c) a 180◦ scan.

2.3. The two-step reconstruction for 2D parallel-beam CT

For a complete curveΓ and a normalized weight functionwS(�k), an object function can be recovered
by

Ψ(�r) =
∫

Γ

∫ ∞

−∞
wS(�k) exp(2πiω1t)

�

PS(ω1)|ω1|dω1|dθ| (8)

where|dθ| is the length of a different arc onΓ.

The weight functionwS(�k), defined for everyS ∈ Γ and all�k ∈ L(
−→
OS), is used to avoid over-sampling

at any frequency. Since a point�k is swept by the frequency lineJ�k
times, the weight function must

satisfy the normalization condition
∑J�k

j=1wSj (�k) = 1 for all �k ∈ R2.

For a weight functionwS(�k) with a general summationw(�k) =
∑J�k

j=1wSj (�k), we have

Φ(�r) =
∫

Γ

∫ ∞

−∞
wS(�k) exp(2πiω1t)

�

PS(ω1)|ω1|dω1|dθ|
�

Φ(�k) =
�

Ψ(�k)w(�k) (9)

where the functionΦ(�r) is called an intermediate function whose Fourier transform is denoted by
�

Φ(�k).
Equation (9) defines a new and flexible two-step (PS(t) → Φ(�r) → Ψ(�r)) scheme for the 2D parallel-

beam CT. For a normalized weight functionwS(�k), we haveΦ(�r) = Ψ(�r)sincew(�k) = 1. For a weight
functionwS(�k)with w(�k) �= 0 in any region of the frequency domain, the object can be reconstructed
from the intermediate function by the second step:

�

Ψ(�k) =
�

Φ(�k)/w(�k)

or equivalently

Ψ(�r) = Φ(�r) ∗ ∗W (�r)
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W (�r) =
∫

R2

1

w(�k)
exp(i2π�k · �r)d2�k.

Here ** denotes the 2D convolution inR2.
The inner integral in Eq. (9) is called filtered projection

P̃S(t) =
∫ ∞

−∞
wS(�k) exp(2πiω1t)

�

PS(ω1)|ω1|dω1 (10)

2.4. Various reconstruction formulae

There are many ways to choose the weight function, and different weight functions lead to various
reconstruction formulae. To demonstrate the flexibility of the two-step scheme (9), in this subsection
let us generate not only the existing FBP, backprojection filtration (BPF), backprojection (BP) andΛ
reconstruction formulae, but also two new formulae by specifying suitable weight functions.

1) Weight function i: wi
S(�k) = wi

S(ω1�e1) = AS , whereAS denotes a real number dependent on the

source position so that the weight functionwi
S(�k) is normalized, i.e.,wi(�k) =

J�k∑
j=1

ASj = 1.

The filtered projection in Eq. (10) can be written as

P̃ i
S(t) =

AS

2π

∫ ∞

−∞
exp(2πiω1t)

�

PS(ω1)(2πiω1)(−isgn(ω1))dω1

=
AS

2π
d

dt
(PS(t) ∗ 1

πt
)

where * denote the 1D convolution operator.
From Eq. (8) or Eq. (9), one arrives at the following reconstruction formula

Ψ(�r) = Φi(�r) =
1
2π

∫
Γ
AS

d

dt
(PS(t) ∗ 1

πt
)|dθ| (11)

If Γ is a 180◦ scan (AS = 1), one obtain the standard FBP formula for parallel-beam CT

Ψ(�r) =
1
2π

∫ π

0

d

dt
(Pθ(t) ∗ 1

πt
)dθ.

2) Weight function ii: wii
S (�k) = wii

S (ω1�e1) = iASsgn(ω1), where the real numberAS satisfies

wii(�k) =
J�k∑

j=1
ASj sgn(ω1) = isgn(k2) .

The two-step formula (9) becomes the BPF formula for parallel-beam CT:

Φii(�r) =
1
2π

∫
Γ
AS

d

dt
PS(t)|dθ|

�

Φ
ii
(�k) =

�

Ψ(�k)isgn(k2)

Ψ(�r) = Φii(x, y) ∗ 1
πy
,
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where the convolution is on the second variabley only.
If Γ is a 180◦ scan (AS = 1), one has

Φii(�r) =
1
2π

∫ π

0

d

dt
Pθ(t)dθ.

3) Weight function iii: wiii
S (�k) = wiii

S (ω1�e1) = AS
|ω1| with

J�k∑
j=1

ASj = 1.

The summed weight functionwiii(�k) =
J�k∑

j=1

A
Sj

|ω1| = 1
|�k|

J�k∑
j=1

ASj = 1
|�k| .

The two-step formula (9) becomes the BP formula for parallel-beam CT.

Φiii(�r) =
∫

Γ
ASPS(t)|dθ|

�

Φ
iii

(�k) =
�

Ψ(�k)
1

|�k|

Ψ(�r) = Φiii(x, y) ∗ ∗ −1
4π2|�r|3 .

For a 180◦ scan andAS = 1, one has

Φiii(�r) =
∫ π

0
PS(t)dθ.

4) Weight function iv: wiv
S (�k) = wiv

S (ω1�e1) = AS |ω1| with
J�k∑

j=1
ASj = 1.

The summed weight function iswiv(�k) =
J�k∑

j=1
ASj |ω1| = |�k|.

The two-step formula (9) becomes theΛ reconstruction formula

Φiv(�r) = − 1
4π2

∫
Γ
AS

d2

dt2
PS(t)|dθ|

�

Φ
iv

(�k) =
�

Ψ(�k)|�k|

Ψ(�r) = Φiv(�r) ∗ ∗ 1
|�r| .

For a 180◦ scan andAS = 1, one has

Φiv(�r) = − 1
4π2

∫ π

0

d2

dt2
PS(t)dθ.

5) Weight function v: wv
S(�k) = wv

S(ω1�e1) = AS
|ω1 sin θ| , with

J�k∑
j=1

ASj = 1.
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The summed weight function iswv(�k) =
J�k∑

j=1

A
Sj

|ω1 sin θ| = 1
|k2| .

The two-step formula (9) becomes a new weighted backprojection (WBP) formula

Φv(�r) =
∫

Γ
ASPS(t)

1
| sin θ| |dθ|

�

Φ
v
(�k) =

�

Ψ(�k)
1

|k2|

Ψ(�r) = Φv(x, y) ∗ −1
2π2y2

=
(
∂

∂y
Φv(x, y)

)
∗ 1

2π2y
.

where the convolution * is applied on the second variabley.
For a 180◦ scan, takingAS = 1 one has

Φv(�r) =
∫ π

0
Pθ(t)

1
| sin θ|dθ.

For a compactly supported functionΨ(�r), afterΦv(�r) is calculated one can calculate derivatives first
and then reconstruct the object function via the finite inverse Hilbert transform [24]. As compared to
the traditional BP algorithm, the advantage of the WBP algorithm lies in that the second step can be
implemented line by line.

6) Weight function vi: wvi
S (�k) = wvi

S (ω1�e1) = −iAS
ω1 sin θ , with

J�k∑
j=1

ASj = 1.

The summed weight function iswvi(�k) =
J�k∑

j=1

−iA
Sj

ω1 sin θ = −i
k2

.

The two-step formula (9) becomes

Φvi(�r) =
∫

Γ
ASPS(t) ∗ 1

πt

1
sin θ

|dθ|
�

Φ
vi

(�k) =
�

Ψ(�k)
−i
k2

Ψ(�r) =
1
2π

(
∂

∂y
Φvi(x, y)

)
.

For a 180◦ scan, takingAS = 1 one has

Φvi(�r) =
∫ π

0
Pθ(t) ∗ 1

πt

1
sin θ

dθ.

We temporarily call this formula the weighted Hilbert transform (WHT) method. As compared to the
BPF algorithm, the order of the derivative operation and Hilbert transform is reversed. That is to say, in
WHT we take the derivative of the intermediate image, instead of the projection dataset.

The FBP [2,22] and BPF [24] are well-known exact algorithms. The BP algorithm [3] andΛ
reconstruction [4] are well-known approximate algorithm. The reconstruction from a BP intermediate
functionΦiii(�r) to the object functionΨ(�r) was also studied [3,28]. To show the fertility of the two-step
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Fig. 4. Fan-beam reconstruction geometries for points O (a) andÕ (b) respectively. The complete region of the scanning
trajectory is shaded in gray.

scheme, we have introduced the two new algorithms: WBP and WHT. Detailed comparison of image
quality and noise performance between the new and existing algorithms will be presented in a separate
paper.

3. Fan-beam reconstruction

The fan-beam reconstruction is to calculate the functionΨ(�r) from its fan-beam projections, either
exactly or approximately. In Fan-bean CT, a locusC consists of one or several continuous curves in the
2D spaceR2, as shown in Fig. 4.

The fan-beam projection of the object functionΨ(�r) with respect to the locusC is defined as

pS′(�n) =
∫ ∞

0
Ψ(

−−→
OS′ + �nl)dl (12)

for everyS ′ ∈ C and every unit vector�n ∈ Ω1.
The two elementary relations [22,29,30] between the parallel- and fan-beam projections are shown in

Fig. 5, which will serve as the bridge between divergent and parallel-beam reconstructions.
In the 2D spaceR2, a unit circle centered at a point̃O is defined as

Ω1
Õ

=
{
S :

−→̃
OS = �̃e2 = (− sin θ, cos θ), θ ∈ [0, 2π)

}
.

For a pointÕ /∈ C, the projection of the locusC on the unit circleΩ1
Õ

is defined as

Γ(C, Õ) =
{
S ∈ Ω1

Õ
:
−→̃
OS =

−−→
ÕS′/|

−−→
ÕS′|, S′ ∈ C

}
.

If Γ(C, Õ) is complete on the unit circleΩ1
Õ

, we say that the trajectoryC is complete with respect tõO,

or thatÕ is a complete point of the locus C. In the 2D space, the integrals along all the lines through a
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Fig. 5. Two basic relations between parallel- and fan-beam projections:
∫∫

R2
1
y
Ψ(x, y)dxdy =

∫∞
−∞

1
y

∫∞
−∞ Ψ(x, y)dxdy

=
∫ 2π

0
1

sin φ

∫∞
0

Ψ(ρ, φ)dρdφ,
∫∞
−∞ Ψ(x, 0)dx =

∫ 0

−∞ Ψ(x, 0)dx +
∫∞
0

Ψ(x, 0)dx.

complete point are known. The set of the complete points is called the complete Region of the locusC,
denoted as R(C), as shown in Fig. 4.

Our general conclusion on the fan-beam reconstruction goes as follows. For any point�r in the complete
region R(C), the value of the intermediate functionsΦi(�r),Φii(�r),Φiii(�r),Φiv(�r),Φv(�r),Φvi(�r), defined
in the above section, can be calculated from fan-beam projection as well. This is due to the two
relations between parallel- and fan-beam projections. SinceΦi(�r) = Ψ(�r), the complete region can be
reconstructed from the fan-beam projections.

In order to translate the parallel-beam formulae to the divergent-beam case, let us exemplify a three-
step method with the well-known FBP formula [22]. This framework will be used to obtain all the other
divergent-beam formulae.

Step 1. Formulate the parallel-beam reconstruction at the originO.
In Fig. 4a, we suppose that the originO is a complete point of the locusC, i.e.,O ∈ R(C) and hence

the projection of the locusC, Γ(C,O), is a complete curve on the unit circle. Weassume that there
exists the parallel projectionPS(t) for everyS ∈ Γ(C,O). For a given pointS ∈ Γ(C,O), the local

coordinate system Otu is defined by the originO and two unit vectors�e2 =
−→
OS and�e1 (obtained via

rotating�e2 clockwise by 90◦), as we did in the above parallel-beam case.
Based on Eq. (11), the value of the object function at the origin can be calculate as follows

Ψ(O) = Φi(O) =
1
2π

∫
Γ(C,O)

AS
d

dt

∣∣∣∣
t=0

(PS(t) ∗ 1
πt

)|dθ|

=
−1
2π2

∫
Γ(C,O)

AS
d

dt

∣∣∣∣
t=0

∫ ∞

−∞
PS(t+ t′)

1
t′
dt′|dθ|.

Step 2. Replace the parallel-beam projection by the fan-beam projection.
Please see Fig. 4a. Recall thatS ′ is the intersection point between the half straight lineOS and the

locusC, i.e.,
−−→
OS′/

−−→|OS′| =
−→
OS = �e2. S′∗ ∈ C is another point on the locus besideS ′, whose local

coordinates in the system Otu areS ′∗(t, u):

t =
−−−→
S′S′∗ · �e1 =

−−→
OS′∗ · �e1, u =

−−→
OS′∗ · �e2.
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Whent = 0, the pointS ′∗ coincides the pointS ′.
As shown in Fig. 5, we have the following relations between the parallel-beam projectionPS(t), and

the fan-beam projectionpS′∗(�n), �n ∈ Ω1,∫ ∞

−∞
PS(t+ t′)

1
t′
dt′ =

∫ π

−π
pS′∗(t,u)(−�e2 cos γ + �e1 sin γ)

1
sin γ

dγ

PS(t) = pS′∗(t,u)(−�e2) + pS′∗(t,u)(�e2).

Therefore, the fan-bean reconstruction formula for the origin is

Ψ(O) =
−1
2π2

∫
Γ(C,O)

AS
d

dt

∣∣∣∣
t=0

∫ π

−π
pS′∗(t,u)(−�e2 cos γ + �e1 sin γ)

1
sin γ

dγ|dθ|,

where the derivative operation is implemented as

d

dt

∣∣∣∣
t=0

∫ π

−π
pS′∗(t,u)(−�e2 cos γ + �e1 sin γ)

dγ

sin γ

= lim
S′∗→S′

1
−−−→
S′S′∗ · �e1

∫ π

−π
[pS′∗(−�e2 cos γ + �e1 sin γ) − pS′(−�e2 cos γ + �e1 sin γ)]

dγ

sin γ
,

andAS is dependent onΓ(C,O).
Step 3. Translate the fan-beam formula to an arbitrary pointÕ ∈ R(C).
See Fig. 4b. Treating any complete pointÕ ∈ R(C) as a new origin point, we have

Ψ(Õ) =
−1
2π2

∫
Γ(C,Õ)

AS
d

dt̃

∣∣∣∣
t̃=0

∫ π

−π
pS′∗(t̃,ũ)(−�̃e2 cos γ + �̃e1 sin γ)

1
sin γ

dγ|dθ|,

whereS goes alongΓ(C, Õ), andAS is dependent onΓ(C, Õ).
Similarly, the derivative operation is implemented as

d

dt̃

∣∣∣∣
t̃=0

∫ π

−π
pS′∗(t̃,ũ)(−�̃e2 cos γ + �̃e1 sin γ)

dγ

sin γ

= lim
S′∗→S′

1
−−−→
S′S′∗ · �̃e1

∫ π

−π

[
pS′∗(−�̃e2 cos γ + �̃e1 sin γ) − pS′(−�̃e2 cos γ + �̃e1 sin γ)

] dγ
sin γ

.

The local coordinate system̃Ot̃ũ is determined by the origiñO and two unit vectors�̃e2 =
−→̃
OS and�̃e1

(obtained via rotating�̃e2 clockwise by 90◦). For example, the coordinates of the source positionS ′∗ ∈ C
are

t̃ =
−−→
ÕS′∗ · �̃e1 =

−−−→
S′S′∗ · �̃e1, ũ =

−−→
ÕS′∗ · �̃e2

In other words, the form of the formula has no change except that the point O is replaced byÕ. We use

the notations�r =
−→
OÕ, andΨ(�r) = Ψ(Õ).
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Repeating the above three steps, we have the following explicit formulae for the other five intermediate
functions:

Φii(Õ) =
1
2π

∫
Γ(C,Õ)

AS
d

dt̃

∣∣∣∣
t̃=0

(
pS′∗(t̃,ũ)(�̃e2) + pS′∗(t̃,ũ)(−�̃e2)

)
|dθ|

Φiii(Õ) =
∫

Γ(C,Õ)
AS

(
pS′(�̃e2) + pS′(−�̃e2)

)
|dθ|

Φiv(Õ) = − 1
4π2

∫
Γ(C,Õ)

AS
d2

dt̃2

∣∣∣∣
t̃=0

(
pS′∗(t̃,ũ)(�̃e2) + pS′∗(t̃,ũ)(−�̃e2)

)
|dθ|

Φv(Õ) =
∫

Γ(C,Õ)

AS

| sin θ|
(
pS′(�̃e2) + pS′(−�̃e2)

)
|dθ|

Φvi(Õ) = − 1
π

∫
Γ(C,Õ)

AS

sin θ

∫ π

−π
pS′(−�̃e2 cos γ + �̃e1 sin γ)

1
sin γ

dγ|dθ|.

After the value of the intermediate function has been calculated in the complete region of a locus,
the next step is the same as in the parallel-beam case. One can either use the intermediate functions
for an approximate reconstruction or exactly reconstruct the object function from them. They allow the
FBP [22,23], BPF [24], BP [3],Λ reconstruction [4,31,32], new WBP and WHT for image reconstruction
from fan-beam data.

Note that the above lambda reconstruction formula,Φiv(Õ), is based on the even extension of the
projection data. However, in our former paper [31] we claimed that the lambda reconstruction can be
based on either the even or odd extension. Now, we realize that in [31] Formula (9) based on the odd
extension is not generally correct, because Eq. (31) must hold on the whole plane instead of at only one
pointx0 to obtain Eq. (32). Therefore, Theorem 1 in [31] does not hold generally. As a fix, the correct
result has appeared in our new paper [32].

4. 3D parallel-beam reconstruction

4.1. Inverse Fourier transform in different coordinate systems

In the 3D spaceR3, Ψ(�r) is an object function to be reconstructed whose Fourier transform is
�

Ψ(�k).
According to Fourier analysis, we have

Ψ(�r) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

�

Ψ(�k) exp(2πi�k · �r)dk1dk2dk3

where�r = (x, y, z) and�k = (k1, k2, k3) are 3D vectors in the real space and Fourier domain, respectively.
In the spherical and cylindrical coordinate systems, the inverse Fourier transform is expressed as

Ψ(�r) =
∫ 2π

0

∫ π

0

∫ ∞

0

�

Ψ(�k) exp(2πi�k · �r)k2dk sin θdθdφ (a)

=
∫ π

0

∫ π

0

∫ ∞

−∞

�

Ψ(�k) exp(2πi�k · �r)k2dk sin θdθdφ (b)
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Fig. 6. Different coordinate systems for the inverse Fourier transform. The spherical (a) and cylindrical (b) coordinate systems
for the inverse Fourier transform lead to different schemes for cone-beam reconstruction (c).

=
∫ π

0

∫ ∞

−∞

∫ ∞

−∞

�

Ψ(�k) exp(2πi�k · �r)|kρ|dkρdk3dφ (c)

as shown in Fig. 6.
In Formula (a), the standard spherical coordinate(k, θ, φ) is used with0 � k < ∞, 0 � θ � π, 0 �

φ < 2π, while in Formula (b) a signed spherical coordinate(k, θ, φ) is used with−∞ < k < ∞, 0 �
θ � π, 0 � φ < π. Historically, Tuy started with (a) to develop a fundamental formula for cone-beam
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Fig. 7. 3D parallel-beam reconstruction geometry. (a) A projection plane in the real space, and (b) a frequency plane in the
Fourier space.

CT [27], and the classic Radon formula

Ψ(�r) = − 1
4π2

∫ π

0

∫ π

0

∂2

∂l2
Rf(l, θ, φ)

∣∣
l=�r·(sin θ cos φ,sin θ sin φ,cos θ) sin θdθdφ,

can be obtained from (b) easily though Radon discovered his formula in another way [5]. This is a reason
why we have two different schemes [15,21,23,26] in the CT field. In Formula (c), the signed cylindrical
coordinate(kρ, k3, φ) with −∞ < kρ < ∞,−∞ < k3 < ∞, 0 � φ < π is used. Our discussion
will start from an improved form of Formula (c), which proves to be convenient for both parallel- and
cone-beam reconstruction [12,28] and, more importantly, make the 3D reconstruction problems very
similar to the 2D counterparts. This is the elementary difference between our scheme and the existing
ones.

In (c), whenφ increase from 0 toπ, the planeOkρk3 scans every point in the frequency space once
and only once (Fig. 6b). We will keep this observation in mind when we deal with more complicated
cases. Two related concepts we will use are the complete curve and weight function.

4.2. Complete curves on the unit sphere

As shown in Fig. 7, in the 3D spaceR3, Ψ(�r) represents the object to be reconstructed, whose Fourier

transform is denoted by
�

Ψ(�k).
The end points of all the unit vectors form the unit sphere in the spaceR3

Ω =
{
S ∈ R3 : |−→OS| = |�e3| = 1

}
. (13)

A curveΓ on the unit sphereΩ consists of a number of differentiable segments, each of which has
the tangential direction at every point.Γ is called complete onΩ if it intersects every great circle of
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Fig. 8. Completeness of curves on the unit sphere. (a) Three symmetrical arcs starting from the point (0, 0,1) are extended
downward. Before they pass the horizontal equator, they are incomplete (thick lines); then, they become complete (thin lines);
and (b) any continuous and piecewise differentiable traceΓAB from A to its opposite point B is a simple complete curve, with
the simplest complete curve being half a great circle.

Ω [33,34]. Clearly, half a great circle is the simplest complete curve. Another simple complete curve
is a continuous and piece-wise differentiable curve connecting two endpoints of a diameter AB ofΩ,
denoted byΓAB (Fig. 8). Again, in this paper all the formulae are based on complete curves unless
otherwise stated.

For a point S on the unit sphere in the frequency space, the plane through the originO and orthogonal

to the normal vector
−→
OS = �e3

Π(
−→
OS) =

{
�k ∈ R3 : �k · −→OS = 0

}

is called a frequency plane (Fig. 7b). When the point S moves along a complete curveΓ, the frequency

planeΠ(
−→
OS) scans the entire frequency space. When the point S moves along a complete curveΓ, the

times the planeΠ(
−→
OS) passes a given point�k can be viewed as a function defined in the Fourier domain

J(�k), or J�k, satisfying thatJ(c�k) = J(�k) for any real numberc �= 0. Geometrically speaking, the great

circle orthogonal to the vector�k intersects the curveΓ atJ(�k) points, denoted asS j , j = 1, 2, . . . , J(�k).
For a complete curve,J(�k) � 1 everywhere. For half a great circle, we haveJ(�k) = 1 over the entire
space. A concrete complete curve and itsJ(�k) function are given in Fig. 9.

4.3. The 3D version of the two-step formula for parallel-beam problem

As shown in Fig. 7, for every pointS ∈ Γ, we define a local coordinate system in terms of three unit

vectors�e3 =
−→
OS,�e1 following the tangential direction ofΓ atS, and�e2 = �e3 × �e1. The space vectors

and frequency vector have the following components respectively:

t = �r · �e1, s = �r · �e2, u = �r · �e3;
ω1 = �k · �e1, ω2 = �k · �e2, ω3 = �k · �e3.
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Fig. 9. A complete curve and its J(k) function. (a) A curve consisting of three orthogonal quarter great circles, i.e., the trajectory
when a point is moved along the path (0,−1, 0)→ (1, 0, 0)→ (0, 0, 1)→ (0, 1, 0), (b) J(k) is equal to 3 inside the two regions
marked by the red lines and 1 elsewhere, and (c)–(f) four representative positions of the frequency plane.

The parallel-beam projection along
−→
OS is defined as

PS(t, s) =
∫ ∞

−∞
Ψ(t�e1 + s�e2 + u�e3)du,

whose Fourier transform is
�

PS(ω1, ω2) =
∫

R2

PS(t, s) exp[−2πi(ω1t+ ω2s)]dtds.

In the real spaceR3, the plane Ots is called a projection plane (Fig. 7a).
The Fourier transform of the projection and the object are related by Fourier slice theorem

�

PS(ω1, ω2) =
�

Ψ(�k)
∣∣∣
�k=ω1�e1+ω2�e2

.

If the projectionPS(t, s) is known for all points S on a complete curveΓ, the object functionΨ(�r) can

be recovered from its Fourier transform
�

Ψ(�k):

Ψ(�r) =
∫

R3

�

Ψ(�k) exp(2πi�k · �r)d�k3
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Fig. 10. When S moves along a continuous curved segment, the frequency plane moves continuously in the frequency space.
The segment can be divided at M points and approximated as a series of great arcs, and the motion of the frequency plane can
be approximated a series of small rotations. HereSnSn+1 denotes the length of the great arc between the two pointsSn and
Sn+1. For simplicity, we further assume that the segment is differentiable.

=
∫

Γ

∫
Π(
−→
OS)

exp(2πi�k · �r)�

P S(ω1, ω2)wS(�k)|ω1|dω1dω2dθ (14)

wheredθ is the length of the differential arc alongΓ. Different from 2D case,dθ is always positive here.

For simplicity, the integration planeΠ(
−→
OS) is denoted byR2 in the following. See Fig. 10 for more

explanation on Formula (14).

The weight functionwS(�k) in Eq. (14), defined for everyS ∈ Γ and all�k ∈ Π(
−→
OS), is used to handle

the over-sampling of frequency components. Since a frequency point�k is swept by the frequency plane

J�k
times, it is required that the summed weight function

∑J�k
j=1wSj (�k) = 1, whereSj , j = 1, 2, . . . , J�k

are the intersection points between the curve and the great circle orthogonal to the vector�k.
The reconstruction process based on Eq. (14) consists of the three steps: (1) calculate the Fourier

transform of every measured projectionPS(t, s), (2) weight the Fourier transform
�

PS(ω1, ω2) by a
weight functionwS(�k)|ω1|, and (3) reconstruct the functionΨ(�r) via a 3D inversion Fourier transform
(Fig. 7). To our best knowledge, it is the first time that this formula is explicitly given, which can be
considered as an improved form of the inverse Fourier transform in the cylindrical coordinate system.

When an object can be fully covered by a parallel-beam, the reconstruction problem is solved by
Eq. (14) or other equivalent formulae [28] such as the classical Radon’s [5] or Orlov’s formula [33,34].
For a long object, such as human body, it is impossible for an x-ray beam to cover the entire object.
Therefore, a more practical problem is to reconstruct a part of the object from truncated projections
(pS(t, s) known in a region of the projection plane Ots). This is called the long object problem of 3D
CT [12,28].

To deal with various cases, let us generalize Eq. (14) into a more flexible two-step form. For a general

weight functionwSj(�k) whose summation is denoted as
∑J�k

j=1wSj(�k) = w(�k), we have

Φ(�r) =
∫

Γ

∫
R2

exp(2πi�k · �r)�

P S(ω1, ω2)wS(�k)|ω1|dω1dω2dθ,
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�

Φ(�k) =
�

Ψ(�k)w(�k), (15)

where the functionΦ(�r) is called an intermediate function with the Fourier transform
�

Φ(�k). For a
normalized weight function, whose summed weight functionw(�k) = 1, the intermediate functionΦ(�r)
is identical to the object, i.e.,Φ(�r) = Ψ(�r). Hence, Eq. (14) is a special case of Eq. (15). For a general
weight function, the resultant intermediate functionΦ(�r) can be used as an approximation to the object
function, or it can be based upon to reconstruct the object functionΨ(�r) via a second-step filtration if
w(�k) �= 0:

�

Ψ(�k) =
�

Φ(�k)/w(�k). (16)

For convenience, the inner integral in Eq. (15) is also called the filtered projection:

P̃S(t, s) =
∫

R2

exp(2πi(ω1t+ ω2s)
�

PS(ω1, ω2)wS(�k)|ω1|dω1dω2

=
1
2π

∂

∂t

∫
R2

exp(2πi(ω1t+ ω2s)
�

PS(ω1, ω2)wS(�k)(−i)sgn(ω1)dω1dω2. (17)

4.4. Reconstruction formulae for 3D parallel-beam problem

Let us develop new reconstruction formulae suitable for truncated parallel-beam projections. Our
method is to choose some special weight functions so that the filtered projection in Eq. (17) can be
calculated froma part of projection on the plane Ots.

1) Weight function I: wI
S(�k) (Dartboard function)

For any complete curveΓ, based on the definition, the functionJ(�k) has the symmetry

J(c�k) = J(�k)

for any real numberc �= 0. Since the values ofJ(�k) are integers, it is reasonable to assumeJ(�k) is
piecewise constant for a practical complete curveΓ. Therefore, we consider a piecewise constant weight
function with the same symmetry,dartboard function.

Let (ρ, α) with ρ ∈ [0,∞), α ∈ [−π/2, 3π/2) be the polar coordinates associated with the frequency

point (ω1, ω2) in the frequency planeΠ(
−→
OS), the polar coordinate axis beingOω1. See Fig. 11. There

are M+1 real numbersβm with −π/2 = β0 < β1 < · · · < βm < · · · < βM = π/2. Furthermore, let
αm = βm + π/2.

Now for a source point S on a complete curveΓ, i.e.,S ∈ Γ, we define the normal weight function
wI

S(�k) satisfying

wI
S(ρ, α) = dm, βm<α < βm+1,m = 0, 1, · · ·,M − 1

wI
S(ρ, α+ π) = wI

S(ρ, α),
(18)

wheredm,m = 0, 1, 2, . . .,M − 1, areM real numbers. Since the weight function defined in Eq. (18)
looks like a dartboard marked with the same scores at opposite positions, we call it a dartboard function.

In the frequency planeΠ(
−→
OS), we denote a basic function as

h(ρ, α) = h(α) =
{

1 α ∈ (−π/2, π/2)
−1 α ∈ (π/2, 3π/2) .
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Fig. 11. (a) A dartboard function, and (b) the product of the Dartboard function and the sign function.

Proposition. The product of a dartboard functionwI
S(�k) and a sign function sgn(ω1) can be uniquely

decomposed as a summation of basic functions, i.e.,

sgn(ω1)wI
S(ω1, ω2) =

M−1∑
m=0

cmh(α− αm), (19)

where

c0 = 1
2(d0 + dM−1)

cm = 1
2(dm − dm−1)

(m = 1, 2, 3, . . . ,M − 1)
.

Proof. First, it is easy to verify that the decomposition holds with the givencm,m = 0, . . . ,M − 1.
For example, for the regionβ0<α < β1, the two sides of Eq. (19) are identical:

1
2
(d0 + dM−1) − 1

2
(d1 − d0) − 1

2
(d2 − d1) − . . .− 1

2
(dM−1 − dM−2) = d0.

Then, we can show that the coefficientscm,m = 0, . . . ,M −1, are unique. Suppose that there is another
decomposition

sgn(ω1)wI
S(ω1, ω2) =

M−1∑
m=0

c′mh(α− αm).

Considering the difference between the two sides ofα = −π/2, we have

c′0 =
1
2
(d0 + dM−1) = c0.

For the same reason, all the coefficientsc′m = cm, for m = 0, . . . ,M − 1. This completes the proof.

Let the function
�

f
I

S(ω1, ω2) = (−i)sgn(ω1)wI
S(�k) denote the filter in Eq. (17), andf I

S(t, s) denote its
corresponding spatial function.
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Fig. 12. By the convolution theorem, a convolution in the real space (a) is equivalent to a multiplication in the Fourier domain

(b): PS(t, s) ∗ 1/(πtm) ⇔ −i
�

P (ω1, ω2)h(α − αm). Note that the 1D convolution can be done line by line.�τm is a unit
vector defined by�τm = �e1 cos αm + �e2 sin αm.

Due to the Proposition, the filter
�

f
I

S(ω1, ω2) can be uniquely decomposed into a sum of several Hilbert
filters

�

f
I

S(ω1, ω2) = (−i)
M−1∑
m=0

cmh(α− αm),

where(−i) h(α − αm) is the m-th Hilbert filter.
Based on the theory of generalized functions [35], we have∫

R2

−isgn(ω1) exp(2πi(ω1t+ ω2s))dω1dω2 =
1
πt
δ(s).

Therefore, the corresponding spatial function of the m-th Hilbert filter is given by∫
R2

−ih(α− αm) exp(2πi(ω1t+ ω2s))dω1dω2 =
1
πtm

δ(sm),

wheretm = t cosαm + s sinαm, sm = −t sinαm + s cosαm are the coordinates in a system rotated
with an angleαm. The m-th filter and its related convolution operation are shown in Fig. 12. The vector
�τm = �e1 cosαm + �e2 sinαm is called m-th filtering direction.

Now, we obtain

f I
S(t, s) =

∫
R2

exp(2πi(ω1t+ ω2s))(−i)
M−1∑
m=0

cmh(α− αm)dω1dω2

=
M−1∑
m=0

cm
πtm

δ(sm). (20)

Therefore, Eq. (17) can be written as

P̃ I
S(t, s) =

1
2π

∂

∂t

(
PS(t, s) ∗ ∗f I

S(t, s)
)
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=
1
2π

∂

∂t

(
M−1∑
m=0

cmPS(t, s) ∗ ∗ 1
πtm

δ(sm)

)

=
1
2π

∂

∂t

(
M−1∑
m=0

cmPS(t, s) ∗ 1
πtm

)

= − 1
2π2

∂

∂t

(
M−1∑
m=0

cm

∫ ∞

−∞
PS(t+ t′ cosαm, s+ t′ sinαm)

1
t′
dt′
)
,

where the Dirac function turns the 2D convolution (**) into a 1D convolution (*), which can be
implemented line by line. In the projection plane, to calculate the filtered projection at a given point (t,
s), we use the projection data on several lines (including its neighborhood for the derivative operation)
through the point (t, s) rather than projection data on the entire projection plane. Thus, the reconstruction
formulae (14 or 15) actually allows those types of data truncations that do not interfere the required
Hilbert filtering:

Ψ(�r) = ΦI(�r) = − 1
2π2

∫
Γ

∂

∂t

M−1∑
m=0

cm

∫ ∞

−∞
PS(t+ t′ cosαm, s+ t′ sinαm)

1
t′
dt′dθ. (21)

For example, the value at the origin can be reconstructed by

Ψ(O) = − 1
2π2

∫
Γ

∂

∂t

∣∣∣∣
t=0

M−1∑
m=0

cm

∫ ∞

−∞
PS(t+ t′ cosαm, t

′ sinαm)
1
t′
dt′dθ. (22)

Figure 13 indicates a weight function (M = 2) and its associated filter, which is decomposed into two
basic filters. The projection data used to calculate the filtered projectionP̃S(0, 0) is also marked.

Now, let us study the case of the simple complete curve. For a simple complete curveΓAB on the unit
sphere (Fig. 14a), a weight function can be defined as

wI1
S (�k) = sgn(�k · �eπ)sgn(�k · �e1) = sgn(�k · �eπ)sgn(ω1)

for all�k ∈ Π(
−→
OS), where�eπ =

−→
OB is the unit vector fromA andB. This weight function is normalized,

i.e.,

J�k∑
j=1

sgn(�k · �eπ)sgn(ω1) =
J�k∑
j=1

sgn(�k · �eπ)sgn(�k · �e1(Sj)) = 1 (23)

for all �k ∈ R3, where�e1(Sj) is the tangential direction of the curveΓAB atSj , the j-th intersection point
betweenΓAB and the unit circle orthogonal to�k.

A simple justification for that normality goes as follows. The weight functionwI1
S (�k) takes on the

value of either 1 or−1, indicating the direction in which the frequency point passes through the frequency
plane. Clearly, when the source point S moves from A to B, the frequency plane is turned over and every
frequency point is swept once and only once if two passes in the opposite directions are not counted. In
Fig. 14, we show the weight function and its filter. To explain the normality of this function in detail, an
intuitive analogy is provided in Appendix A.
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Fig. 13. Example of the dartboard functionwI
S(�k) and its decomposition. For a given weight function (a), its filter (b) can be

decomposed into a sum of two basic filters (c) and (d):
�

f
I

(ω1, ω2) = −iwI
S(�k)sgn(ω1) = −2i/3h(α) − i/3h(απ/2) with

the spatial functionfI(t, s) = 2δ(s)
sπt

+ δ(t)
3πs

. For computation of the filtered projection at the origin, only the projection data
indicated in (e) and (f) are involved.

Associated with the weight functionwI1
S (�k), the filter and the convolution kernel are

�

f
I1

S (ω1, ω2) = −isgn(�k · �eπ) = −isgn(�k · �τ1),

f I1
S (t, s) =

1
πt1

δ(s1),

and the filtered projection becomes

P̃ I1
S (t, s) =

1
2π

∂

∂t

[
PS(t, s) ∗ 1

πt1

]
,
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Fig. 14. Weight functionwI1
S (ω1, ω2) and the filter related to the curveΓAB. In (a) and (b),ΓAB is a curve connecting the two

end points of the diameter AB and FF’ is the intersection line betweenΠ( �OS) and the plane orthogonal to�eπ = �OB, �τ1 the
unit vector along the projection of the vector�eπ on the planeΠ( �OS); (c) and (d) show the filter in the Fourier domain and the
direction of the convolution in the real space, respectively.

where the unique filtering direction is along�τ1, which is the unit vector along the projection of�eπ on the

planeΠ(
−→
OS):

�τ1 = (�eπ − (�eπ · �e3)�eπ)/|�eπ − (�eπ · �e3)�eπ|.
The reconstruction formula (21) now becomes

Ψ(�r) = − 1
2π2

∫
ΓAB

∂

∂t

∫ ∞

−∞
PS(t+ t′ cosα1, s+ t′ sinα1)

1
t′
dt′dθ. (24)

For convenience,�τ1,t1,s1 etc. are shown in Fig. 14(d).
2) Weight function II: wII

S (�k) = wII
S (ω1�e1 +ω2�e2) = ASisgn(ω1) with real numbersAS dependent

on the source positions S.
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Now, Eq. (17) is simplified as

P̃S(t, s) =
As

2π
∂

∂t
PS(t, s). (25)

The summed weight function

wII(�k) =
J(�k)∑
j=1

ASj isgn(ω1).

Suppose thatwII(�k) �= 0 in the Fourier space. We define

W II(�r) =
∫

R3

1

wII(�k)
exp(2πi�k · �r)d3�k. (26)

Eq. (15) becomes

ΦII(�r) =
1
2π

∫
Γ
As

∂

∂t
PS(t, s)dθ

Ψ(r) = ΦII(�r) ∗ ∗ ∗W II(�r). (27)

SinceW II(�r) is generally a 3D function, to reconstruct the objectΨ(�r) we must perform a 3D convolution
on the intermediate functionΦII(�r). To obtain a formula which is suitable to reconstruct a part of the
object, one needs to adjust the constantAS so that the summed weight functionwII(�k) is reduced to a
1D or 2D function and the 3D convolution is reduced to a 1D or 2D convolution. In a general sense, this
remains an open problem.

Fortunately, in the special case of the simple complete curveΓAB (Fig. 14a), one can takeAS = 1.
According to Eq. (23) one has

J�k∑
j=1

sgn(ω1) =
J�k∑

j=1

sgn(�k · �e1(Sj)) = sgn(�k · �eπ).

Therefore, we obtain the summed weighted function and the second-step convolution kernel as

wII1(�k) =
J�k∑

j=1

wII1
Sj (�k) =

J�k∑
j=1

isgn(ω1) = isgn(�k · �eπ)

1

wII1(�k)
= −isgn(�k · �eπ),

W II1(�r) =
∫

R3

−isgn(�k · �eπ) exp(i2π�k · �r)d3�r = 1
πt′ δ(t

′
1)δ(t

′
2),

wheret′ = �r · �eπ, t′1 = �r · �eπ1, t
′
2 = �r · �eπ2, and�eπ1, �eπ2, �eπ are three orthogonal normal vectors.

Therefore, Eq. (27) becomes

ΦII1(�r) =
1
2π

∫
ΓAB

∂

∂t
PS(t, s)dθ
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Ψ(�r) = −
∫ ∞

−∞
ΦII1(�r + t′�eπ)

1
πt′
dt′ (28)

where the 1D convolution is performed. This formula is also suitable to reconstruct a part of the object
from truncated data, because one just needs to calculate locally the intermediate functionΦ II1(�r+ t′�eπ),
on the line through the point�r and along the direction�eπ.

3) Weight function III wIII
S (�k) = wIII

S (ω1�e1 + ω2�e2) = AS
|ω1| .

Equation (17) becomes

P̃ III
S (t, s) = AS

∫
R2

exp(2πi(ω1t+ ω2s))
�

PS(ω1, ω2)dω1dω2 = ASPS(t, s). (29)

Then, we obtain a backprojection algorithm as

ΦIII(�r) =
∫

Γ
ASP

III
S (t, s)dθ,

�

Φ(�k) =
�

Ψ(�k)wIII(�k), (30)

wherewIII(�k) =
J�k∑

j=1
ASj |ω1|−1 =

J�k∑
j=1

ASj |�k · �e1(Sj)|−1.

The first stepP III
S (t, s) → ΦIII(�r) is localized but the second stepΦIII(�r) → Ψ(�r) is not local

unless the curveΓ is properly specialized, such as the great circle of the unit sphere. The convenient
way is to viewΦIII(�r) as an approximate local reconstruction formula and omit the second step.

4) Weight function IV wIV
S (�k) = wIV

S (ω1�e1 + ω2�e2) = AS |ω1|.
Equation (17) becomes

P̃ IV
S (t, s) =AS

∫
R2

exp(2πi�k · �r)�

P S(ω1, ω2)ω2
1dω1dω2

= − 1
4π2AS

∂2

∂t2P (t, s). (31)

Then, we obtain the lambda-type local reconstruction formula

ΦIV (�r) = − 1
4π2

∫
Γ
AS

∂2

∂t2
PS(t, s)dθ,

�

Φ
IV

(�k) =
�

Ψ(�k)wIV (�k), (32)

wherewIV (�k) =
J�k∑

j=1
ASj |ω1| =

J�k∑
j=1

ASj |�k · �e1(�Sj)|.
Similarly, the convenient way is to viewΦIV (�r) as an approximate local reconstruction and omit the

second step.
5) Weight function V: wV

S (�k) = wV
S (ω1�e1 + ω2�e2) = 1.

The weight function is 1 for every point on the frequency plane. The summed weight function is

wV (�k) =
J(�k)∑
j=1

wV
Sj(�k) = J(�k).
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Eq. (17) is simplified as

P̃ V
S (t, s) =

1
2π

∂

∂t

∫
R2

exp(2πi(ω1t+ ω2s)
�

PS(ω1, ω2)(−i)sgn(ω1)dω1dω2

= − 1
2π

∂

∂t

∫
R
PS(t+ t′, s)

1
πt′
dt′. (33)

The reconstruction formula (15) becomes

ΦV (�r) = − 1
2π

∫
Γ

∂

∂t

∫
R
PS(t+ t′, s)

1
πt′
dt′dθ

ΦV (�k) =
�

Ψ(�k)J(�k). (34)

On the projection plane, the convolution in Eq. (34) is performed along the tangential direction of the
curveΓ at S. IfΓ is half a great circle on the unit ball, the frequency point is scanned by the frequency plane
exactly once,J(�k) = 1, ΦV (�r) is an exact reconstruction of the object function, i.e.,ΦV (�r) = Ψ(�r). If
the curveΓ is close to half a great circle so thatJ(�k) = 1 in the main part of the Fourier domain and
J(�k) equals an integer close to 1 in the rest part,ΦV (�r) is a good approximation of the object function,
ΦV (�r) ≈ Ψ(�r) . Otherwise,ΦV (�r) is no longer a good approximation ofΨ(�r), and the second step
filtration is necessary.

For a simple complete curveΓAB, Formula (34) can be expressed as

ΦV (�r) = − 1
2π

∫
ΓAB

∂

∂t

∫
R
PS(t+ t′, s)

1
πt′
dt′dθ

ΦV (�k) =
�

Ψ(�k)J(�k).

Therefore, the Palamodov’s parallel-beam formula

Ψ(�r) = − 1
2π

∫
ΓAB

∂

∂t

∫
R
PS(t+ t′, s)

1
πt′
dt′dθ, (P1)

which is referred to as Theorem 3 in paper [36] and Theorem 4.3 in the monograph [37], is generally
approximate. In the proof in [37], the flaw is no compensation for the fact that the frequency plane may
scan some regions in the frequency space more than once (J(�k) > 1).

5. Cone-beam reconstruction

Similar to the 2D case, let us translate the reconstruction formulae for 3D parallel-beam case to the
cone-beam CT with the well-known relations between the parallel- and divergent-beam projections in
Fig. 5.

5.1. A trajectory and its complete region

A trajectoryC consists of a finite number of curve segments in the 3D spaceR 3, along which an x-ray
source goes (Fig. 15). The cone-beam projection of the object functionΨ(�r) along a trajectoryC is
defined by

pS′(�n) =
∫ ∞

0
Ψ(

−−→
OS′ + �nl)dl
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Fig. 15. Imaging geometries for cone-beam reconstruction at pointsO (a) andÕ (b) from data collected along a general
trajectory C.

for all S′ ∈ C, and�n ∈ Ω.
In R3, the unit sphere centered at a pointÕ is defined as

ΩÕ =
{
S ∈ R3 : |

−→̃
OS| = |�̃e3| = 1

}
.

For a pointÕ /∈ C, the projection of the locusC on the unit sphereΩÕ is defined as

Γ(C, Õ) =
{
S ∈ ΩÕ :

−→̃
OS =

−−→
ÕS′/|

−−→
ÕS′|, S′ ∈ C

}
.

If Γ(C, Õ) is complete on the unit sphereΩÕ, we say that the trajectoryC is complete with respect to
Õ or that the pointÕ is a complete point of the trajectoryC. The set of the complete points is called
the complete Region of the locusC, denoted as R(C). In contrast to the 2D case, integrals along some
lines through a complete point may be unknown. This fact causes some difference between fan- and
cone-beam reconstruction.

A special trajectory is the differentiable curveCA′B′ , which starts from pointA′ toB′ with the chord
A′B′ through the origin O, see Fig. 16. Clearly,CA′B′ is complete with respect to any point betweenA′
andB ′, but generally incomplete with respect to points beyond the chordA ′B′.

5.2. Reconstruction formulae for cone-beam CT

Now, we translate the formulae for the parallel-beam to cone-beam case with the three-step method
we employed for 2D CT.
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Fig. 16. Imaging geometries for cone-beam reconstruction at pointsO (a) andÕ (b) from data collected along the locusCA′B′ .

5.2.1. The general FBP and its special case
As shown in Fig. 15, for a general trajectoryC, without loss of the generality we suppose that O is a

complete point, i.e.,O ∈ R(C). In other words,Γ(C,O), the projection ofC on the unit sphereΩ, is a
complete curve. We assume that the parallel-beam projectionPS(t, s) are known for everyS ∈ Γ(C,O).

Step 1. For everyS ∈ Γ(C,O), the local coordinate system Otsu is defined by the origin O and the

three unit vectors,�e3 =
−→
OS,�e1 the tangential direction ofΓ(C,O) atS, and�e2 = �e3 × �e1, as we did in

the 3D parallel-beam case.
Equation (22) can be rewritten as

Ψ(O) = − 1
2π2

∫
Γ(C,O)

∂

∂t

∣∣∣∣
t=0

M−1∑
m=0

cm

∫ ∞

−∞
PS(t+ t′ cosαm, t

′ sinαm)
1
t′
dt′dθ,

wherecm αm are dependent onΓ(C,O).
Step 2. See Fig. 15a. Recall thatS ′ is the intersection point between the half straight lineOS and

the locusC, i.e.,
−−→
OS′/

−−→|OS′| =
−→
OS = �e2. S′∗ ∈ C is another point on the locus nearS ′, whose local

coordinates in the system Otsu are

t =
−−→
OS′∗ · �e1 =

−−−→
S′S′∗ · �e1, s =

−−→
OS′∗ · �e2,u =

−−→
OS′∗ · �e3.

Whent = 0, the pointS ′∗ coincides with the pointS ′. WhenS ′∗ → S′, s→ 0 is faster thant→ 0.
In reference to Fig. 5, one has the relation between parallel-beam projectionPS(t, s) and cone-beam

projectionpS′∗(�n),∫ ∞

−∞
PS(t+ t′ cosαm, s+ t′ sinαm)

1
t′
dt′ =

∫ ∞

−∞
pS′∗(t,s,u)(−�e3 cos γ + �τm sin γ)

1
sin γ

dγ,
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PS(t, s) = pS′∗(t,s,u)(−�e3) + pS′∗(t,s,u)(�e3),

where the unit vector�τm = �e1 cosαm + �e2 sinαm.
Then, Eq. (22) becomes

Ψ(O) = − 1
2π2

∫
Γ(C,O)

d

dt

∣∣∣∣
t=0

∫ 2π

0

M−1∑
m=0

cmpS′∗(t,s,u)(−�e3 cos γ + �τm sin γ)
dγ

sin γ
dθ, (35)

cm, �τm are dependent onΓ(C,O). Since the source positionS ′∗ ∈ C moves along the curveC in R3,
we write the derivation in Eq. (35) asddt

∣∣
t=0

instead of ∂
∂t

∣∣
t=0

.
The derivative operation in Eq. (35) can be explicitly written as

d

dt

∣∣∣∣
t=0

∫ 2π

0

M−1∑
m=0

cmpS′∗(t,s,u)(−�e3 cos γ + �τm sin γ)
dγ

sin γ

= lim
S′∗→S′

1
−−−→
S′S′∗ · �e1

∫ 2π

0

M−1∑
m=0

cm(pS′∗(−�e3 cos γ + �τm sin γ) − pS′(−�e3 cos γ + �τm sin γ))
dγ

sin γ
.

Step 3. For any complete point̃O ∈ R(C), the reconstruction formula for cone-beam projection is

Ψ(Õ) = − 1
2π2

∫
Γ(C,Õ)

d

dt̃

∣∣∣∣
t̃=0

∫ 2π

0

M−1∑
m=0

cmpS′∗(t̃,s̃,ũ)(−�̃e3 cos γ + �̃τm sin γ)
dγ

sin γ
dθ, (36)

wherecm, �̃τm are dependent onΓ(C, Õ), as shown in Fig. 15(b).
Similarly, the derivative operation in Eq. (36) can be explicitly written as

d

dt̃

∣∣∣∣
t=0

∫ 2π

0

M−1∑
m=0

cmpS′∗(t̃,s̃,ũ)(−�̃e3 cos γ + �̃τm sin γ)
dγ

sin γ

= lim
S′∗→S′

1
−−−→
S′S′∗ · �̃e1

∫ 2π

0

M−1∑
m=0

cm(pS′∗(−�̃e3 cos γ + �̃τm sin γ) − pS′(−�̃e3 cos γ + �̃τm sin γ))
dγ

sin γ
.

The local coordinate system̃Ot̃s̃ũ is defined by the origiñO, and the three orthonormal vectors�̃e3 =
−→̃
OS,

�̃e1 (the tangential direction ofΓ(C, Õ) at S), and�̃e2 = �̃e3 × �̃e1. For example, the local coordinates of
S′∗ ∈ C are

t̃ =
−−→
ÕS′∗ · �̃e1 =

−−−→
S′S′∗ · �̃e1, s̃ =

−−→
ÕS′∗ · �̃e2, ũ =

−−→
ÕS′∗ · �̃e3.

Formula (36) is a general cone-beam FBP formula, which does not need the assumption that the object
must be supported inside the trajectory. When the trajectory is a finite union ofC∞-curve, this formula
coincides with the Katsevich’s general scheme [21].

In the following, we directly give the associated cone-beam reconstruction formulae without describing
the corresponding three steps. For the cone-beam trajectoryCA′B′ (Fig. 16) and any point on the chord
A′B′, i.e.,Õ ∈ (A′, B′), using the three step-method, the reconstruction formula (24) can be obtained as

Ψ(Õ) = − 1
2π2

∫
Γ(CA′B′ ,Õ)

d

dt̃

∣∣∣∣
t̃=0

∫ 2π

0
pS′∗(t̃,s̃,ũ)(−�e3 cos γ + �̃τ1 sin γ)

dγ

sin γ
dθ,
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with �̃τ1 =
(
�eπ − (�eπ · �̃e3)�eπ

)/
|�eπ − (�eπ · �̃e3)�eπ|, �eπ =

−−→
A′B′/|−−−→A′B′|.

This formula is consistent with the filtered backprojection formulae (FBP) developed by several
groups [13–17].

5.2.2. The general BPF and its special case
For any complete point̃O of a general trajectoryC, i.e.,Õ ∈ R(C), based on Eq. (27), the intermediate

functionΦII(Õ) can be calculated from

ΦII(Õ) =
1
2π

∫
Γ(C,Õ)

AS
d

dt̃

∣∣∣∣
t̃=0

(
pS′∗(t̃,s̃,ũ)(�̃e3) + pS′∗(t̃,s̃,ũ)(−�̃e3)

)
dθ.

However, generally speaking, it is an open question how to reconstruct the object functionΨ( Õ) from
ΦII(Õ).

Fortunately, for the trajectoryCA′B′ (Fig. 16) and any point on the chordA′B′, i.e.,Õ ∈ (A′, B′), by
Eq. (28) the intermediate function can be calculated by

ΦII1(Õ) =
1
2π

∫
Γ(CA′B′ ,Õ)

d

dt̃

∣∣∣∣
t̃=0

(
pS′∗(t̃,s̃,ũ))(�̃e3) + pS′∗(t̃,s̃,ũ)(−�̃e3)

)
dθ.

Though Eq. (28)

Ψ(�r) = −
∫ ∞

−∞
ΦII1(�r + t′�eπ)

1
πt′
dt′, (37)

with �eπ =
−−→
A′B′/|−−→A′B′| requires the value ofΦII1(Õ) for all points Õ on the lineA′B′, the object

functionΨ(�r) at any point�r betweenA′ andB ′ can be reconstructed fromΦII1(Õ) using the so-called
finite inverse Hilbert [24,38] if the object function valueΨ(�r) is zero outside the line segmentA ′B′.

This formula is consistent to the backprojection filtration formulae [13,15,18–20]. In [13,18,20], the
BPF is introduced based on the odd extension of the projection data. The even extension was introduced
in [15] when the framework based on Tuy’s formula was set up. However, according to our current
understanding, Theorem 3 in [15] is compromised by a minor conceptual flaw. In the proof of Theorem 3
in [15], Eq. (38) holds forx ∈ (a1, a2) instead of on the whole line because of the condition of Eq. (34).
It is not permissible to apply the inverse Hilbert transformHa2−a1 on Eq. (38) to obtain Theorem 3. In
other words, there exists an essential difference between the even and odd extensions of projection. We
acknowledgement that the minor change of the phase from “the inverse Hilbert transform” to “the finite
inverse Hilbert transform” has no influence on the scheme described in [15].

5.2.3. The approximate reconstruction formulae
For any complete point̃O of a general trajectoryC, i.e., Õ ∈ R(C), based on the relation between

parallel- and divergent-beam projections, an approximate reconstruction functionΦIII(Õ) in Eq. (30)
andΦIV (Õ) in Eq. (32) can be calculate from the cone-beam projection as well:

ΦIII(Õ) =
∫

Γ(C,Õ)
AS(pS′(�̃e3) + pS′(−�̃e3))dθ

ΦIV (Õ) =
−1

(2π)2

∫
Γ(C,Õ)

AS
d2

dt̃2

∣∣∣∣
t̃=0

(pS′∗(t̃,s̃,ũ)(�̃e3) + pS′∗(t̃,s̃,ũ)(−�̃e3))dθ.
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It is consistent with the local cone-beam reconstruction formulae developed by Louis, Maass [39] and
Katsevich [40], respectively.

According to Eq. (34), for a complete point̃O ∈ R(C), one can approximately reconstruct the object
by

ΦV (Õ) = − 1
2π2

∫
Γ(C,Õ)

d

dt̃

∣∣∣∣
t̃=0

∫ 2π

0
pS′∗(t̃,s̃,ũ)(−�̃e3 cos γ + �̃e1 sin γ)

dγ

sin γ
dθ. (38)

If Γ(C, Õ) is half a great circle on the unit sphereΩÕ, ΦV (Õ) is an exact reconstruction, i.e.,ΦV (Õ) =
Ψ(Õ). If it is near half a great circle,ΦV (Õ) is an approximation of the object,ΦV (Õ) ≈ Ψ(Õ). For
the locusCA′B′ and a circular locus, Eq. (38), as an approximate reconstruction formula, coincides with
the Palamodov cone-beam reconstruction formula [36,37] and Feldkamp formula [41,42], respectively.

Using the three-step method, the Palamodov parallel-beam reconstruction formula (P1) can be trans-
lated into the cone-beam case [36,37]:

Ψ(Õ) = − 1
2π2

∫
Γ(CA′B′ ,Õ)

d

dt̃

∣∣∣∣
t̃=0

∫ 2π

0
pS′∗(t̃,s̃,ũ)(−�̃e3 cos γ + �̃e1 sin γ)

dγ

sin γ
dθ,

Õ ∈ (A′, B′). (P2)

Evidently, the approximation in the Palamodov cone-beam Formula (P2) comes from the approximation
of the associated parallel-beam formula (P1). After we [43] pointed out the approximate nature of the
Palamodov cone-beam formula [36], he modified his proof [44,45]. However, based on our new general
reconstruction scheme, it is Theorem 3 in his paper [36] that leads to the approximate nature of his
cone-beam formula. Also, we recognize that except for the minor flaw related to the multiple scan of the
frequency plane, Palamodov’s idea to link the parallel-beam problem to the cone-beam problem is very
valuable.

6. Discussions and conclusion

Evidently, we can extend the above discussion into the higher dimensional space to form a reconstruc-
tion theory based on truncated projections. This is a promising direction of integral geometry [37]. We
are working along this line and will report our results later.

It is necessary to underline the differences between our and others’ approaches. Since cone-beam CT
is practically important, most researchers have paid much more attention on cone-beam CT in hope to
solve the cone-beam problems directly. This makes 3D CT problems quite different from and much more
difficult than its 2D counterparts. On the other hand, in this paper 3D parallel-beam problems are first
carefully studied, and then cone-beam solutions come out in an easy way through the simple relations
between parallel- and divergent-beam projection, as illustrated in Fig. 17. This new methodology is a
primary part of the originality of this paper.

The three schemes in the CT field have come from the three different fundamental formulae: Radon’s,
Tuy’s and our new formula (14). However, since the three formulae are related to the different forms of
the inverse Fourier transform, these three schemes should be essentially equivalent. The reader needs
to choose the convenient one for their problems. Meanwhile it is acknowledged that our scheme can
generate many formulae in CT, but not all of them. For example, it is difficult to generate the BPF



266 Y. Wei et al. / Scheme of computed tomography

Cone-
beam 
problem

3D 
Parallel-
beam 
problem

Inverse

Fourier 

transform  

Its form

in cylindrical

coordinate

system   

Formula

for  a 

complete 

curve

Relationship 

between

Parallel and

cone -beam 

projections  

Cone-
beam 
problem

3D 
Parallel-
beam 
problem

Inverse

Fourier 

transform  

Its form

in cylindrical

coordinate

system   

Formula

for  a 

complete 

curve

Relationship 

between

Parallel- and

cone

projections  

Fig. 17. Steps towards the solution of the cone-beam problem in our scheme.
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Fig. 18. Applicability of our scheme in the cases of discontinuous trajectories. The traditional assumption that an object be
compactly supported inside the locus is no longer necessary.

formula with the odd data extension in [13] and the fan-beam formulae in [46–48]. Hence the reader
still needs to pay attention to new methods and results in the CT field.

In conclusion, we have presented an intuitive and complete scheme for CT in different imaging
geometries including 2D and 3D parallel- and divergent-beams. A key step is the development of a new
fundamental formula starting from the inverse Fourier transform incylindrical coordinate system. Our
results have been demonstrated to be not only consistent with the most latest main formulae but also valid
under more general conditions including a non-continuous scanning trajectory and an extended object
support (Fig. 18). Meanwhile, some minor conceptual flaws in the CT literature have been identified
and fixed. Finally, some open questions have been suggested. Our understanding is that Fourier analysis
should be viewed as the theoretical foundation of CT and that this complete scheme of CT is just another
example among many applications of Fourier analysis in modern sciences and technologies [49].

The authors thank Prof. Y. Ye with University of Iowa for insightful discussions. This work is partially
supported by NIH/NIBIB (Grants EB002667, EB004287, EB007288, EB001685 and EB006036) and
Ge Healthcare.

Appendix A: An intuitive analogy of the weight function wI1
S (ω1, ω2)

Here we explain how we define this weight function and why it is normal.
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Fig. 19. Analogy of the weight function .Two colored balloon (red and green) have respectively moved from their original (a)
to opposite sides (b). A disk inside a sphere turned over from its original position (c) via an intermediate position (d) to the
opposite position (e).
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1. Outward-homeward function for colored balloons in a room
A red balloon and a green balloon were respectively placed on the red and green sides of a room

(Fig. 19a). The two balloons can move inside the room and pass the two middle border lines freely.
After some time, the two balloons is found to be on the opposite sides (Fig. 19b). A conclusion can be
made that each balloon has effectively passed the border lines only once, no matter how many times the
balloon really went over the border lines.

Mathematically, one can define an outward-homeward function to indicate the motion direction of a
balloon across the border lines, which takes 1 (outward) when the balloon is going to the other side, and
takes−1 (homeward) when it is returning its original side. Note that when a balloon is going to the other
side, its color is the same as the color of the first border line it comes across; when it is returning, its
color is different from the color of the first border line it sees. If we call the red and green color positive
and negative respectively, i.e., sgn(red)= 1 and sgn(green)= −1, the outward-homeward function can
be expressed as

sgn(the color of a balloon)· sgn(the color of the first border line the balloon comes across).

If a balloon is observed on the opposite side, the sum of the outward-homeward function must be 1, such
as1 − 1 + 1 = 1 for the green balloon in Fig. 19b.

2. Outward-homeward function for color beads inside a ball

Now, let us imagine that a ball which is divided into two halves by a virtual disk, one half being full of
tiny red beads the other full of tiny green beads. The two sides of the disk are red and green accordingly.

At the beginning (Fig. 19c), the normal direction of the disk
−→
OS was towards to the point A. Then, one

moved S along a curveΓAB on the sphere to point B (Fig. 19d), which is opposite to the point A. During
the movement, the ball along with its beads has been kept still and the virtual disk can sweep the beads
freely (without any interaction). One can conclude that the disk has passed every bead (either red or
green)effectively only once. Figure 19e shows an intermediate instant during the disk rotation. The
outward-homeward function for the bead being scanned by the disk is identical to the weight function
wI1

S (ω1, ω2):

sgn(the color of a bead)sgn(the color the bead see when the disk comes over)
= sgn(�k · �eπ)sgn(�k · �e1) = wI1

S (ω1, ω2).

In fact, Fig. 19e is a color version of Fig. 14a.
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